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Abstract

A novel conjugated rod–coil diblock copolymer poly(3-hexylthiophene)-block-poly(furfuryl methacrylate) (P3HT-b-
PFMA) has been successfully synthesized for the first time using photoinduced organocatalyzed atom transfer radical 
polymerization (O-ATRP). This process utilized an organic photoredox catalyst of N-aryl phenoxazine, namely 
10-(Perylene-3-yl-10H-Phenoxazine, under 365 nm UV irradiation. The diblock copolymer P3HT-b-PFMA was produced 
efficiently in a controlled manner, resulting in designed average molecular weights and a narrow polydispersity index. 
Notably, the furfurylmethacrylate (FMA) monomer derived from biomass-based furfuryl compounds was applied for this 
controlled polymerization, leading to the formation of conjugated diblock copolymers. The synthesized P3HT-b-PFMA 
was characterized through 1H-NMR, FT-IR, and GPC methods. Furthermore, the optical and hydrophilic-hydrophobic 
properties of P3HT-b-PFMA were also evaluated through UV-Vis spectroscopy and contact angle measurements.
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1. Introduction

Over the past decades, the conjugated polymer has become 
a promising organic material for optoelectronic applications[1-5]. 
This is because they have numerous excellent properties, 
including high conductive properties in the oxidization state, 
good solubility in typical solvents, low toxicity, and strong 
chemical stability in normal environmental conditions. 
Among conjugated polymers, poly(3-hexylthiophene) 
(P3HT) has been intensively researched for widespread 
electronic applications, including organic solar cells, organic 
field effect transistors, the electrode in lithium batteries, 
and protective coating[6-10]. Additionally, there have been 
many reports showing that rod-coil block copolymers 
based on poly(3-hexylthiophene) are potentially utilized in 
organic electronics[11-14]. Such block copolymers based on 
P3HT have contributed advanced properties by improving 

mechanical strength and forming self-organized structures 
in various morphologies on the nanometer scale, such as 
lamellar, cylindrical and spherical structures[15-17]. Moreover, 
the incorporation of functionalized coil block segments in 
the P3HT-based block copolymers can pave the way for 
the development of optical sensor organic materials[18,19].

The controlled/living radical polymerization methods have 
been used as primary techniques for synthesizing rod-coil diblock 
copolymers[12]. Among these methods, atom transfer radical 
polymerization (ATRP) has been extensively utilized for the 
synthesis of rod-coil diblock copolymers. ATRP has been proven 
successful in creating various advanced polymers with well-
defined structures and controlled architecture[20-23]. In traditional 
ATRP, metal catalysts are employed in the polymerization 
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 process, which archived a control over the molecular weight, 
the narrow polydispersity index, and controlled end-groups 
of the resulting polymers. However, such polymers produced 
through traditional ATRP with transition metal catalysts may 
retain traces of metal, which causes tremendous damage in 
subsequent uses of the polymeric products[24]. This poses 
challenges for applications in biomedicine and optoelectronic 
fields. To address this issue, organic photocatalyst (O-ATRP/
metal-free ATRP) has been explored and developed for controlled 
radical polymerization, gradually replacing traditional ATRP 
with transition metal catalysts[25-29].

On the other hand, biomass-derived furfuryl methacrylate 
(FMA), prepared from cellulosic-biomass-derived furfural, 
emerges as a potential substitute for the current petroleum-
based methacrylate monomers, such as methyl methacrylate 
(MMA) and iso-butyl methacrylate[30]. The FMA monomer 
owns a reactive functional furfuryl group, making it a 
valuable material for practical applications such as coatings, 
sealing, and adhesives[31,32]. However, when FMA monomer 
undergoes conventional radical polymerization and classical 
anionic polymerization, it results in insoluble poly(furfuryl 
methacrylate) (PFMA). This outcome is attributed to excessive 
chain transfer related to the reactive furfuryl group present 
in both the polymer and the monomer. To overcome this 
challenge, atom-transfer radical polymerization (ATRP) 
of FMA has been employed to produce gel-free polymers 
with controlled average molecular weight[33]. Pérez et al.[34] 
reported diblock copolymers consisting of poly(trimethylene 
carbonate) and poly(furfuryl methacrylate) PFMA end 
blocks. These copolymers were synthesized through 
sequential organocatalytic ring-opening polymerization 
(ROP) and photoinitiated metal-free atom-transfer radical 
polymerizations (O-ATRP) of furfuryl methacrylate. These 
copolymers exhibited thermoreversible properties. Additionally, 
Raffa et al. synthesized a series of copolymers of styrene and 
furfuryl methacrylate, applied for self-healing materials due 
to the thermally reversible Diels–Alder (DA) reaction[35]. 
However, there is a lack of reports on the synthesis and 
investigation of diblock copolymers based on a coil segment 
of poly(furfuryl methacrylate) with P3HT as a rod segment.

To address this, we reported the synthesis of rod-coil 
diblock copolymer utilizing regioregular poly(3-hexylthiophene) 
(P3HT) as the rod segment and poly(furfuryl methacrylate) 
(PFMA) polymerized from furfuryl methacrylate as the 
coil segment. The polymerization of the FMA monomer 
was conducted through photoinitiated organocatalyzed 
atom transfer radical polymerization under UV irradiation, 
employing 10-(Perylene-3-yl-10H-Phenoxazine (PPOZ) as 
a photocatalyst. The resulting diblock copolymer, termed 
poly(3-hexylthiophene)-block-poly(furfuryl methacrylate) 
(P3HT-b-PFMA), was characterized using 1H NMR, FTIR 
spectroscopies, and GPC analysis. Furthermore, we explored 
the optical properties of the diblock copolymer through 
UV-Vis spectroscopy.

2. Materials and Methods

2.1 Materials

3-Hexylthiophene, (Diacetoxyiodo)benzene, 
3-Bromo perylene, 10H-phenoxazine, furfuryl alcohol, 

1,3-Bis(diphenylphosphino)propane nickel(II) chloride, iodine, 
chloro 1-methylethyl magnesium solution (2 mol/L in THF), 
methacryloyl chloride, potassium carbonate (K2CO3, 99.5%) 
and N-bromosuccinimide were purchased from Fisher and 
Acros Organics. These chemicals were preserved in a glove 
box at ambient temperature. Anhydrous tetrahydrofuran (THF, 
99.8%), 2-2-Bromo-2-methylpropionyl bromide (Br-iBuBr), 
triethylamine (NEt3, 99%), sodium borohydride (NaBH4, 
99%), copper(I) bromide (CuBr, 98%), Palladium(II) acetate 
(Pd(OAc)2, 98%), tri-tert-butylphosphine (P(t-Bu)3, 97%), 
sodium tert-butoxide (NaOtBu, 97%), and phosphoryl 
chloride (POCl3, 99%) were obtained from Sigma-Aldrich. 
Methanol (99.8%), chloroform (CHCl3, 99.5%), toluene 
(99.5%), n-hexane (99%), ethyl acetate (99%), and diethyl 
ether (99%) were acquired from Fisher and Acros Organics. 
All the solvents were used as received.

2.2 Measurements

TLC analysis was collected on glass surface coated by 
a fluorescent indicator F-254. FT-IR analysis was carried 
out on a Tensor 27 Bruker instrument, involving 264 scans 
with a resolution set at 4 cm-1. For 1H NMR spectra, a Bruker 
Avance 500 MHz instrument was utilized, employing a 
solvent of deuterated chloroform (CDCl3) and an internal 
reference of Tetramethylsilane. GPC analysis was executed 
by using gel permeation chromatography (Varian Polymer 
PL-GPC 50) with an RI detector. The GPC experiments 
employed anhydrous THF as the eluent, with a flow rate 
of 1.0 mL.min-1. Polystyrene (PS) standards were used to 
evaluate the average molecular weight and the molecular 
weight distribution of the resulting polymers. The optical 
properties of the polymers were assessed through UV–Vis 
spectroscopy using Agilent UV-Vis 8453 diode array, covering 
a wavelength range from 190 nm to 1100 nm.

2.3 Synthesis of furfuryl methacrylate monomer (FMA)

The synthesis procedure involved dissolving furfuryl 
alcohol (5 mL, 1 eq) in 20 mL of THF, followed by an addition 
of triethylamine (10 mL, 1.25 eq) to the solution. The mixture 
was then cooled to 5 °C, and methacryloyl chloride (8.4 mL, 
1.5 eq) was dropwise added over 1 h. The reaction proceeded 
for 16 h at room temperature. Subsequently, the mixture 
was diluted with 30 mL of dichloromethane and subjected 
to multiple washes by deionized water (50 mL). Then, 
the organic phase was dried using anhydrous K2CO3 and 
subsequently filtrated to collect the anhydrous organic mixture. 
The solvent was then removed under reduced pressure to 
obtain the crude product. Purification of the crude product 
was achieved through silica gel column chromatography 
using ethyl acetate: n-hexane (1:50) as the eluent, resulting 
in the isolation of a light-yellow oil with a yield of 95%. 
1H NMR (500 MHz, CDCl3): δ (ppm): 1.95 (s, 3H), 5.14 (s, 
2H), 5.57 (s, 1H), 6.13 (s, 1H), 6.36 (d, 1H), 6.42 (d, 1H), 
7.42 (s, 1H). Elemental Analysis for C9H10O3: Calculated C, 
65.05; H, 6.07; O, 28.88. Found: C 66.20; H, 5.96; O, 27.84.

2.4 Synthesis of photocatalyst 10-(perylen-yl)-10H-
phenoxazine (PPOZ)

PPOZ was synthesized with a modified synthetic procedure 
from our previous article[36]. A magnetic stir bar was introduced 
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into a 25 mL round-bottom flask, which was then evacuated 
and filled with nitrogen. Subsequently, 8 mL of toluene was 
added to the reaction flask. The 10H-phenoxazine (160 mg, 
0.81 mmol), Pd(OAc)2 (3.61 mg, 0.016 mmol), NaOtBu 
(116 mg, 1.20 mmol), and P(t-Bu)3 (6.50 mg, 0.032 mmol) 
were sequentially added to the solution. Following this, 
3-Bromo perylene (297 mg, 0.90 mmol) was introduced 
to the reaction. The reaction proceeded at 110 °C for 4 h. 
Then, the temperature of the flask was reduced to ambient 
temperature. Afterwards, the mixture was diluted with 
CHCl3 (50 mL), washed with deionized water, and dried 
over K2CO3. The organic layer was then filtered, and the 
solvent evaporated using a rotary evaporator to obtain the 
crude product. Purification of the crude product was achieved 
through column chromatography using a mixture of ethyl 
acetate: n-hexane (5:95), resulting in the isolation of a white 
solid powder. The product was further dried at 70 °C under 
vacuum for 24 h, yielding 85%. 1H NMR (500 MHz, CDCl3): 
δ (ppm): 5.88 (d, 2H), 6.53 (t, 1H), 6.64 (t, 2H), 6.73 (d, 
2H), 7.48 (t, 1H), 7.54 (t, 3H), 7.75 (t, 2H), 7.91 (d, 1H), 
8.25 (t, 3H), 8.35 (d, 1H). Elemental Analysis for C32H19NO: 
Calculated C, 88.66; H, 4.42; N, 3.23; O, 3.69. Found: C, 
87.92; H, 4.63; N, 3.36; O, 4.09.

2.5 Synthesis of rod-coil diblock copolymer poly(3-
hexylthiophene)-block-poly(furfuryl methacrylate) 
(P3HT-b-PFMA)

P3HT-b-PFMA was synthesized through metal-free 
atom transfer radical polymerization (ATRP) utilizing 
the P3HT-macroinitiator and PPOZ as a photoredox 
catalyst according to our previous report[37]. In a 25 mL 
flask, 100 mg of P3HT-macroinitiator (Mn 

1H NMR = 
9000 g/mol, 0.011 mmol) was combined with 5 mL of 
THF solvent using a syringe, and the solution was stirred 

until homogeneous. Then, a solution of FMA (36.5 mg, 
0.22 mmol) and PPOZ (2.38 mg, 0.005 mmol) was added. 
The mixture underwent three freeze-pump-thaw cycles for 
degassing, followed by continuous stirring until homogeneity 
was achieved. Subsequently, the solution was inserted in 
a UV-box (365 nm) for 24 h at room temperature. Finally, 
the resulting polymer solution was extracted with CHCl3, 
precipitated into cold methanol, and dried under vacuum, 
yielding 125 mg of the desired product with a conversion 
rate of 68%. FT-IR (cm-1): 795, 1014, 1453, 1509, 1561, 
1728, 2853, 2922, 2953. 1H NMR (500 MHz, CDCl3), δ 
(ppm): 6.96 (s, 1H), 3.60 (s, 3H), 2.80 (t, 2H), 1.69 (sex, 
2H), 1.49 (q, 6H), 0.89 (t, 3H). GPC: Mn = 12400 g/mol, 
Ð = 1.42. Mn estimated by 1H NMR = 12650 g/mol.

3. Results and Discussion

Scheme 1 presents the preparation of the monomer 
FMA and the synthesis of diblock copolymer poly(3-
hexylthiophene)-block-poly(furfuryl methacrylate) (P3HT-
b-PFMA) through O-ATRP using a photocatalyst PPOZ. 
The P3HT macroinitiator was synthesized using the GRIM 
method, providing end groups for the macroinitiator[37]. 
The FMA monomer was obtained from an esterification 
reaction between furfuryl alcohol and methacryloyl chloride 
in the presence of triethylamine, yielding 95%. On the 
other hand, the photocatalyst PPOZ was synthesized 
from 10H-phenoxazine with 3-Bromo perylene through 
a C-N cross-coupling reaction, resulting in an 85% yield. 
The PPOZ exhibited maxima absorption at 254 nm, 
350 nm, and 440 nm. The obtained results of 1H NMR 
and gel permeation chromatography (GPC) determined 
the Mn of the P3HT macroinitiator was approximately 
9000 g/mol[38]. Subsequently, the P3HT macroinitiator 

Scheme 1. Synthesis route of FMA, PPOZ, and diblock copolymer P3HT-b-PFMA.
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was utilized to polymerize of FMA monomer in the 
presence of the PPOZ with various contents under UV 
irradiation to produce the diblock copolymers. To achieve a 
controlled metal-free ATRP, the molar ratio of monomers/
macroinitiator/PPOZ was established as follows: ([FMA]/
[P3HT-macroinitiator]/[PPOZ]) = 100/1/0.01-0.5. 
The polymerization was conducted at room temperture 
for 24 h using anhydrous tetrahydrofuran. The resulting 
diblock copolymers P3HT-b-PFMA were precipitated 
in cold methanol, followed by filtration under vacuum. 
Subsequently, the diblock copolymers P3HT-b-PFMA 
were dried at 70 °C for 24 hours.

Based on the principles of conventional ATRP established 
by the Pearson et al.[39], and Matyjaszewski group[40], the 
proposed mechanism for the O-ATRP using the PPOZ as 
the photocatalyst can be illustrated in Scheme 2. Upon 
UV irradiation, PPOZ is excited to a state capable of 
reducing the P3HT-macroinitiator through an oxidation 

process, generating an activated radical for polymerization 
propagation. Additionally, the oxidation of the PPOZ•+Br− 
complex creates a deactivation, leading to the regeneration 
of P3HT-macroinitiator and the neutral state of PPOZ. This 
activation and deactivation process maintains control over 
the radical polymerization. When conducting the O-ATRP 
for furfuryl methacrylate with a low content of photocatalyst 
([FMA]:[P3HT- macroinitiator]:[PPOZ] = 30:1:0.01) 
in THF sovent, the polymerization conversion was low, 
which accounted for 10% (Entry 1, Table 1). Increasing 
the catalyst content to 0.05 equivalents while maintaining 
other reaction parameters, the polymerization conversion 
significantly increased to 68% (Entry 2, Table 1). Conversely, 
at a catalyst content of 0.1 equivalent, the polymerization 
conversion decreased to 54% (Entry 3, Table 1). The result 
could be due to the high loading of PPOZ, which generates 
many radicals, leading to the quenching of polymerization 
propagation and resulting in polymers with lower molecular 

Scheme 2. Proposed mechanism of O-ATRP of FMA using an organic photocatalyst PPOZ.

Table 1. Macromolecular characteristics of P3HT-b-PFMA polymerized by organic photocatalyst ATRP process using P3HT-Macroinitiator 
(Mn,NMR = 9000 g/mol, Đ = 1.10) and PPOZ.

Entry [FMA]/ 
[P3HT-Macroinitiator/[PPOZ] Conv. (%)a Mn,GPC (g/mol)b Đb

1 30/1/0.01 10 10500 1.27
2 30/1/0.05 68 12400 1.42
3 30/1/0.1 54 11700 1.47

aConversion was calculated by gravimetric method, as follow: Conv = (m - mI - mPPOZ)/mM wherein, m is the weight of product, mI is the weights 
of the macroinitiator, mPPOZ and mM are the weights of the PPOZ catalyst and monomer, respectively; bNumber–average molecular weight (Mn) 
and polydispersity index (Đ) as determined by GPC in THF at 35 °C.
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weight compared to the theoretical number–average molar 
mass of the polymer.

The obtained diblock copolymers from the O-ATRP 
were analyzed via 1H NMR after 24 h. In Figure 1, the 
peak at 6.97 ppm corresponds to the methine proton of 
thiophene moieties, while the other peaks at 0.91, 1.35, 
1.71, and 2.8 ppm are attributed to the alkyl chain of 
3-hexylthiophene. Additionally, the peak at 4.91 ppm is 
assigned to the methylene of furfuryl methacrylate units, 
and the peaks at 6.35 ppm and 7.43 ppm correspond to 
the protons of furfuryl ring moieties, revealing signals 
corresponding to the PFMA block (peaks c, d, e, and f). 
Consistent with the results of 1H NMR characterization, the 
GPC traces of the diblock copolymer P3HT-b-PFMA were 
found to shift toward higher molecular weights over reaction 
time (Figure 2). This confirms the successful synthesis of 
diblock copolymer P3HT-b-PFMA. The determination 
of the polymerization degree of the PFMA block was 
conducted on 1H NMR spectroscopy, calculated based on 
the relative intensities of the methine group of P3HT (peak 

7, δ = 6.97 ppm) and that of furfuryl (peak f, 7.43 ppm). 
The estimated molecular weight (Mn) of the coil polymer 
block PFMA was calculated to be approximately 3650 g/mol, 
corresponding to 22 repeating units of furfuryl methacrylate. 
Consequently, the Mn of diblock copolymers P3HT-b-PFMA 
was estimated to be around 12650 g/mol. The estimated 
Mn for the P3HT-b-PFMA diblock copolymers aligns 
reasonably well with the experimental molecular weights 
evaluated by GPC, although GPC molecular weights are 
not absolute values.

To investigate the influence of UV light on the organic 
photocatalyst polymerization, controlled polymerization 
experiments were conducted by switching on/off the UV 
light. The experiments used a ratio of [FMA]:[P3HT-
Macroinitiator]:[PPOZ] = 30:1:0.05 under a nitrogen 
condition. The polymerization flask experienced replicated 
cycles of UV illumination exposure for 2 h, followed 
by periods of darkness for 1 h at each interval to isolate 
the copolymer product and calculate the polymerization 
conversion. The copolymers acquired at each time 
point were analyzed using GPC for a determination 
of the average molecular weight. The results indicated 
that monomers were not consumed when the UV light 
turned off (Figure  3A). Additionally, the molecular 
weight increased when exposed to UV light during 
the reaction. Furthermore, a linear plot of conversion 
versus polymerization time confirmed that the FMA 
polymerization followed first-order kinetics throughout 
the reaction (Figure 3B). In Figure 3C, the GPC traces 
of copolymers clearly illustrate a gradual increase in 
molecular weight with reaction time.

The solubility of the diblock copolymer P3HT-b-PFMA 
was investigated in various solvents using UV-Vis spectroscopy. 
The UV-Vis absorption spectrum of P3HT-b-PFMA in 
various solvents and as a thin film is presented in Figure 4. 
The results indicate that the diblock copolymers P3HT-b-
PFMA exhibited good solubility in chloroform (CHCl3), 
dichloromethane (CH2Cl2), tetrahydrofuran (THF), and 
toluene. However, in ethyl acetate, the diblock copolymers 
P3HT-b-PFMA was not completely soluble and precipitated, 
leading to P3HT chain aggregation. Additionally, the solid thin 
film of P3HT-b-PFMA showed a red-shift with a maximum 
absorption at 520 nm and a shoulder absorption at 610 nm. 
The absorption spectrum of the thin film P3HT-b-PFMA 
is similar to that of the homopolymer rr-P3HT, which has 
an optical band gap of 1.9 eV.

The incorporation of a coil polymer into the rod segment 
could change the hydrophilicity of P3HT-based materials. 
Therefore, the surface wettability of diblock copolymers 
P3HT-b-PFMA was examined through contact angle 
measurements. Figure 5 shows the water contact angle when 
water was deposited on the surfaces of homopolymer P3HT 
and diblock copolymers P3HT-b-PFMA. The homopolymer 
P3HT exhibited a contact angle value of 98.8o throughout 
the experiment, indicative of hydrophobic properties. 
In contrast, water contact angles on diblock copolymers 
P3HT-b-PFMA exhibited a value of 71.8o, indicating a more 
hydrophilic nature. This result proves that the incorporation 
of the PFMA segment into the hydrophobic P3HT changes 
the hydrophilicity of P3HT from hydrophobic to amphiphilic 
properties.

Figure 1. 1H NMR spectra of P3HT-b-PFMA after 24h of 
irradiation time (entry 2, Table 1).

Figure 2. GPC traces of P3HT-b-PFMA before and after 24h of 
irradiation time (entry 2, Table 1).
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Figure 3. (A) Plot of molecular weight of copolymer P3HT-b-PFMA vs time demonstrating the control over polymerization propagation 
through irradiation ([FMA]:[P3HT-Macroinitiator]:[PPOZ] = 30:1:0.05; (B) First-order kinetic plot of monomer conversion vs time; (C) 
GPC traces of P3HT-b-PFMA diblock copolymers vs reaction time.

Figure 4. The UV-Vis absorption spectra of P3HT-b-PFMA in different solvents and in thin film.
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4. Conclusion

In the present work, we have successfully synthesized a 
new rod-coil diblock copolymer, P3HT-b-PFMA, through 
O-ATRP using the organic photocatalyst polymerization of 
furfuryl methacrylate monomers The P3HT-b-PFMA was 
characterized by using 1H NMR, GPC, FT-IR, and UV-vis 
methods to evaluate their chemical structure and optical 
properties. Additionally, the hydrophilicity of diblock 
copolymer P3HT-b-PFMA was assessed through contact 
angle measurements. The obtained P3HT-b-PFMA exhibited 
amphiphilic properties, making them soluble in various 
organic solvents. This result holds potential significance for 
electronic circuit printing using novel organic semiconductors.
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