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Abstract

Thermally modification of wood is an environment-friendly alternative method for improving several properties of wood 
without the use of chemicals. The compressive strength (CS) parallel to the grain of reinforced laminated veneer lumber 
(LVL) manufactured from heat treated beech (Fagus orientalis) veneers and carbon fibre was determined. Thermally 
modification was performed at 140°C, 160°C, 180°C, and 200 °C according to thermal treatment process. Carbon fibre 
were added as a reinforcement layer between wood veneers bonded with phenol-formaldehyde (PF), polyvinyl acetate 
(PVAc) polyurethane adhesives (PU) to improve properties of LVL. Results showed that reinforcing LVL panels with 
carbon fibre increased both density and CS. The PF adhesive showed better results for reinforced LVL panels with 
carbon fibre. The anatomical structure and density of the wood material significantly affect its mechanical properties, 
including compressive strength parallel to the grains. Wood density had a strong significant linear relationship with CS.
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1. Introduction

Wood material is one of the earliest building and engineering 
materials used by mankind in the world. It continues to be a 
remarkable material in the construction and woodworking 
industries. Wood has unfavorable structural features as knots, 
combustion properties, dimensional instability, low biological 
resistance, easy degradation from external environmental 
conditions, and twisted fibres[1,2]. It is necessary to improve 
or eliminate these unfavorable structural features of wood 
material and make it suitable for its end use.

In recent years, considering the environment and 
human health, different methods have been developed to 
eliminate or minimize the unfavorable properties of wood 
and wood-based materials. One of the most popular methods 
is thermal modification, and its application is increasing in 
recent years[3-5]. Thermal modification has been found to be 
an effective method to improve wood dimensional stability, 
biological durability, and to reduce the equilibrium moisture 
content. Thermal modification alters the cell wall polymer 
and chemistry of wood by heating at high temperature levels. 
High temperature changes the chemical and anatomical 
properties of wood[6,7]. Furthermore, mechanical strength 
properties may also decrease depending on the treatment 
conditions[8-11].

In the last couple of decades, there has been a rapid 
increase in the consumption of forest resources due to 
increase in the world population, increase in the demand 

for wood materials, unsustainable use of forest resources, 
forest fires, and natural disasters such as landslides. Structural 
composite timbers (SCLs) have been produced to eliminate 
the structural defects of the wood material and to use wood 
material more efficiently. One of these structural composite 
timbers is laminated veneer lumber (LVL); it is one of the 
most widely used high- strength engineered wood products 
for constructional applications that is also an alternative to 
solid wood used for structural applications[12,13].

Structural composite lumber can be reinforced with 
synthetic fibres to effectively improve their structural 
properties. The commonly used fibre reinforced polymer 
(FRP) composite for wood is glass-fibre reinforced polymer 
(GFRP), aramid fibre reinforced polymer (AFRP), carbon-
fibre reinforced polymer (CFRP), and hybrid materials 
(carbon fibres and glass fibres)[14-21]. Glass fibre fabrics have 
lower resistance properties to alkaline environments and 
lower fatigue strength. Aramid fibres have closely strength 
properties to glass fibres but are more resistant to fatigue. 
Alternatively, carbon fibres are characterized by higher 
stiffness than glass fibres and they are more stable against 
chemicals and high temperatures. Also, these fibres have 
the best properties among fibres used in the production of 
fibre composites[8].

Over the years, to improve of technological properties 
of LVL as a construction material, reinforcement of LVL, 
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wood and adhesive type and methods have been carried 
out by many researchers[22-33]. When previous studies are 
analyzed, many of the researchers have been focused effect 
of reinforcement material on tension of glulam or timber 
in bending, modulus of rupture (MOR), and modulus of 
elasticity (MOE), however reinforcing LVL has not been 
commonly reported. In addition, the use of heat-treated 
wood material both indoors and outdoors is increasing, 
and an increase is observed in the demand for heat-treated 
wood material in the woodworking industry.

Thermal modification significantly reduces some 
mechanical properties, including the compressive strength 
parallel to the grains, however the dimensional stability 
and the biological durability of wood increases after heat 
treatment process. Compression strength of wood and wood 
composites materials plays an important role in almost any 
construction applications[34-36].

Hence, the objective of this study was to determine the 
influence of carbon fibre reinforcement on compressive 
strength parallel to the grain of laminated veneer lumber 
(LVL) bonded with phenol-formaldehyde (PF), polyvinyl 
acetate (PVAc) (all the resins used separately) and 
polyurethane  adhesives (PU) using heat-treated beech 
(Fagus orientalis Lipsky) veneers.

2. Materials and Methods

Beech (Fagus orientalis) wood is one of the widespread 
tree species in the World to use in LVL. Beech (Fagus 
orientalis) wood was investigated herein because of its wide 
usage in the wood working and construction industry[37]. 
Defect-free draft samples (20mm×750mm×100mm) were 
subjected to heat treatment. Thermally modification was 
done under a controlled environment with heat tolerance 
of ±0.1°C. Thermally modification of the test samples was 
carried out in three stages (drying at high temperature, heat 
treatment, cooling, and conditioning) given in Figure 1. 
In the first stage, the temperature was raised to 100°C for 
5 hours, then to 130°C for 10 hours, and then to the target 
temperature for 5 hours. In the second stage, heat treatment 
has been applied in the aimed four different temperatures 
(140°C, 160°C, 180°C and 200°C) for two hours. During 
stage I and II, steam was applied for 5 seconds at 200°C 
second intervals. In the third stage, the temperature was 
decreased to room temperature (20±2°C). The total thermally 
modification period took 35 hours for each temperature 
value. After the heat treatment process, the samples were 
rested in a suitable place under atmospheric conditions 
for three weeks. There are 7 groups (solid wood beech, 
PVAc-LVL, PF-LVL, PU-LVL, PVAc-RLVL, PF-RLVL, 
PU-RLVL) researched, in each group 5 different temperatures 

investigated, control 20°C, heat treatment groups 140°C, 
160°C, 180°C, 200°C. Totally 350 test samples prepared 
for mechanical tests.  

Many chemical and physical properties of wood are 
permanently altered by the heating process. The main 
reason for using the features is the thermal degradation of 
the half-cells. The desired changes become apparent from 
about 150 ºC and continue with the stairs as the temperatures 
of the temperature. Esteves and Pereira published a review 
about wood modification and heat treatment, they cite 
163 publications about heat treatment. In major publications, 
heat treatment applications were changed from 140°C to 
200°C[38]. As a result, moisture rise, and shrinkage fall; 
biological endurance increases; is the color decision; splitting 
a large number of decomposing substances flowing through 
the wood; wood becomes lighter; decrease in equilibrium 
moisture content; The pH value decreases, and the thermal 
gloss properties become better.

In this study, 200 gr/m2 plain weave carbon fibre was 
used as reinforcing materials. Carbon fibres were obtained 
from Dost Kimya Inc., Istanbul, Turkey. According to the 
technical data provided by the manufacturer, the tensile 
strength is 3800 MPa, tensile modulus 240 GPa, average 
density 1.79 g/cm3 and tensile strain 1.6%.

Polyvinyl acetate (PVAc), phenol-formaldehyde (PF), 
and polyurethane  adhesives (PU) were used as binder. 
The PVAc and PU adhesives were supplied by POLISAN 
firm. City, Turkey. PVAc adhesive density is 1.1 g/cm3, 
viscosity 16.000±3.000 mPa s, and pH 5. PF adhesive was 
purchased from Gentas Company, Bolu, Turkey. It has a 
density of 1.12 g/cm3 at 20 °C, pH 8.4, viscosity 600 cPs at 
20 °C, and contains solid matter at 48%[4]. PU adhesive has 
an approximate pH of 7 and a viscosity of 5500-7500 mPa 
at 25°C. Its density is 1.11±0.02 g/cm3, and the period of 
solidification at 20°C and 65% relative humidity is 24 h, as 
specified by Gentas Company, Bolu, Turkey.

Thermally modificated veneers were used in the 
LVL composites manufacturing. Before producing LVL 
composites, heat-treated draft samples were cut in the 
dimension of 4 × 70 × 700 mm (radial direction × tangent 
direction × longitudinal direction). Conditioned at 20±2°C, 
and 65±%5 relative humidity for at least three weeks. 
The lamination process of the test samples was carried out 
under laboratory conditions at room temperature (20 ±2°C). 
In this process, the adhesives were applied on one surface of 
the veneers and both sides of the carbon fibre fabric. They 
were 180 g/m2 for veneer-veneer bonding and 250 g/m2 for 
veneer-carbon fibre bonding. The surface characteristics of the 
carbon fibre fabric were effective to permit in spreading the 
high amount of adhesive to compensate the weaker bonding 
properties of the adhesive to the carbon fibre compared to 
wood samples. The hydraulic pressing of all samples was 
made with a pressure of 10 N/mm2 and temperature of 
130 °C during 30 min for PF, 22 °C during 240 min for PU 
and 22 °C during 240 min for PVAc, and all the panels were 
stored for 10 days for curing (The stocks were removed from 
the hydraulic press and kept in a closed environment for a 
period of 10 days). After the curing process, 15 mm edges 
were trimmed off from the panels, and test samples were Figure 1. Schematic representation of heat treatment process.
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then machined. The manufacturing process of test samples 
are depicted in Figure 2.

The compressive strength parallel to grain (CS) was 
determined using a universal testing machine (Instron-5969) 
according to the ISO 13061-17 (2017) standard[39]. The dimensions 
of the test samples were 20 mm × 20 mm × 30 mm and 
during tests the loading rate was 2.5 mm/min. Ten samples 
were prepared in each experimental group. Figure 3 depicts 
the test setup for compressive strength parallel to grain test. 
Specimens were conditioned in a conditioning chamber at 
temperatures of 20 ±2 °C and relative humidity of 65 ±5% 
until reached constant weight before the mechanical test. 
After the climatization process, the mass of each specimen 
(M) and volume (V) were determined. The air-dry density 
(D) of the specimens was determined according to ISO 
13061-2 (2014)[40] and calculated using Equation 1:

( )3   /  D g mm M V− = 	 (1)

The CS value was calculated by using Equation 2:

( )2  /  .maxCS N mm P b d− = 	 (2)

where Pmax is the maximum load applied to the specimens 
(N), b is the width of the specimens (mm), and d is their 
thickness (mm).

Analysis of variance (ANOVA) tests were performed to 
determine the effect of thermal treatment temperature, carbon 
fibre fabric and adhesive types on the compressive strength 
parallel to grain of beech wood at the 0.05 significance 
level. Significant differences between the average values 
of the groups were compared using Duncan’s test by using 
the Least Significant Difference (LSD) value.

3. Results and Discussions

In Table 1, the mean values of the specimens density 
are listed. The density value of three types of reinforced 
LVL were higher than that both unreinforced LVL and solid 
woods groups. The highest density was 776 kg/m3 for the 
reinforced specimens bonded with PF adhesive control 
group. Increases in density can be explained by the greater 
amount of adhesive spread in the reinforced samples and 
the higher density of the carbon fibre fabric regarding the 
base materials. Wei et al.[41] evaluated the effect of carbon 
fibre reinforced polymer LVL. The authors reported that 
the reinforcing process increased the density value of test 
samples. Also, Auriga et al.[17] reported that density of the 
reinforced samples with carbon fibres was higher than the 
control group. Density of wood and wood-based composites 
are one of the most important properties that affect other 
physical and mechanical properties, and it is commonly 
considered as the predictor of strength properties[42], in 

Figure 2. The manufacturing process of test samples.

Figure 3. Test setup for compressive strength parallel to grain.
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Figure  4, seven groups of specimens density and heat 
treatment groups illustrated.

In this study, density values of reinforced and unreinforced 
LVL specimens varied significantly. According to Table 1 heat 
treatment significantly reduces the density of specimens as the 
applied temperature is increased, regardless of the material 
tested. The largest reduction on the density of Fagus orientalis 
were -4.22% at the 180°C and -6.64% at the 200 °C. It is 
well known that the heating of wood significantly changes 
its physical and mechanical properties due to degradation 
of hemicelluloses[39,43,44] which is proportional to the applied 
temperature.

Density values of samples were heavily dependent on 
properties of the adhesives used and press conditions. When 
the density values were compared, the density values of the 
samples laminated with PF glue were higher than the density 
values of the samples laminated with the other two glues. 
This may have been due to the difference in the pressing 
process with PF glue. In the pressing process with PF glue, a 

small mechanical condensation process may have occurred 
here, since temperature is applied along with press pressure. 
This may have led to an increase in the density values of 
the samples laminated with PF glue. This situation can be 
explained by the distinct structural properties of the PF 

Table 1. The density values of LVL and RLVL (reinforced LVL) samples.
Group of 
Samples

Heat Treatment 
(°C)

Density (g mm-3) 
(Mean value) Min (g mm-3) Max (g mm-3) SD (Standard 

Deviation) Changes (%)

Solid Wood beech 
(Fagus orientalis)

Control 0.691 0.655 0.731 0.025 -
140 0.684 0.657 0.719 0.017 -1.02
160 0.672 0.653 0.698 0.016 -2.83
180 0.663 0.639 0.697 0.015 -4.22
200 0.648 0.614 0.683 0.020 -6.64

PVAc-LVL Unheated 0.717 0.685 0.751 0.020 3.63
140 0.707 0.675 0.733 0.017 2.26
160 0.693 0.668 0.711 0.015 0.29
180 0.684 0.645 0.722 0.025 -1.02
200 0.673 0.631 0.699 0.000 -2.67

PF-LVL Unheated 0.727 0.708 0.748 0.014 4.95
140 0.716 0.681 0.755 0.024 3.49
160 0.706 0.673 0.745 0.021 2.12
180 0.695 0.676 0.723 0.016 0.58
200 0.685 0.668 0.707 0.013 -0.88

PU-LVL Unheated 0.715 0.679 0.724 0.014 3.36
140 0.711 0.685 0.739 0.019 2.81
160 0.694 0.663 0.749 0.023 0.43
180 0.686 0.652 0.721 0.021 -0.73
200 0.675 0.649 0.695 0.016 -2.37

PVAc-RLVL Unheated 0.753 0.732 0.775 0.015 8.23
140 0.744 0.698 0.779 0.025 7.12
160 0.731 0.676 0.763 0.026 5.47
180 0.721 0.673 0.759 0.027 4.16
200 0.713 0.665 0.743 0.028 3.09

PF-RLVL Unheated 0.776 0.739 0.799 0.019 10.95
140 0.763 0.747 0.789 0.012 9.44
160 0.752 0.715 0.779 0.019 8.11
180 0.742 0.699 0.773 0.025 6.87
200 0.733 0.681 0.769 0.024 5.73

PU-RLVL Unheated 0.754 0.705 0.776 0.020 8.36
140 0.748 0.721 0.766 0.015 7.62
160 0.729 0.695 0.769 0.024 5.21
180 0.722 0.685 0.751 0.023 4.29
200 0.712 0.688 0.745 0.019 2.95

Figure 4.  Density values according to heat treatment at solid wood, 
LVL and RLVL samples.
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adhesive itself and the laminate production process. In the 
lamination process with PF adhesive, the press temperature 
was applied as 130 °C and the press time was 30 min. On the 
other hand, PVAc and PU adhesives were also applied at 
a temperature of 25 °C and press time 240 min. The press 
pressure was 10 N mm-2 in the production of all samples. 
Lamination process beech veneers glued with PF resins at hot 
pressure may have caused thermo-mechanical densification 
and consequently this situation may have been caused an 
increase in samples density[45].

In recent years, interest in thermal modification of wood 
and reinforced wood composite materials have been increasing 
and its use in structural applications is increasing[17,45-51]. It is 
a widely known fact that heat treated wood material can 
be more brittle than unheated wood and prone to cracking. 
Due to the increased brittleness of heat-treated wood material 
and important to determine the fracture properties if it is 
used in structural applications particularly fracture in tension 
perpendicular to the grain[52,53].

In the present study, failure types of solid wood and 
laminated veneer lumbers in compression parallel to grain 
were significantly changed after heat treatment. Compared 
with the unheated samples, delamination of adhesive layer 
and fracture type of specimens at maximum compressive load 
of heat-treated sample was much more serious and different. 
Fracture occurred abruptly at maximum load in samples 
that were thermally modificated at 180°C and 200°C while 
non-modified specimens were plastification before failure.

The three most common failure modes are depicted 
in Figure 5. The failure caused by shearing is presented 
in Figure 5a. splitting and shearing failure is depicted in 
Figure 5b and crushing, and splitting failure is illustrated 
in Figure 5c de la Rosa García  et  al.[54] stated that the 
fracture toughness of thermally modified of wood material 
is not only dependent on the density, but also depend on 
the temperature, changes in the internal structure of wood 
and the degree of degradation of the cell wall components. 
Also, Sebera et al.[42] reported  the fracture properties of 
heat-treated beech wood should be taken into consideration 
for structural application, when cyclic loading may lead to 
microcracking and material fatigue.

Table  2 shows the effects of reinforcement on the 
compressive strength parallel to the grains (CS) and 
Duncan test results of LVL and RLVL laminates. It has 
been shown that the effect of adhesive type, and carbon 
fibre fabric on the compressive strength parallel to the 
grains was significant (p˂0.05). An increase of CS was 
observed for all samples made with the addition of carbon 
fibre compared to the unreinforced and solid wood groups. 
Also, Table 2 shows that the CS decreases significantly with 
thermal treatment. It appears that the heat treatment, type 
of adhesive and reinforcement influence the CS differently. 
After reinforcement process of heat-treated and unheated 
samples, the CS improved greatly. The values of the CS of 
the reinforced samples are significantly higher from 1.02% 
to 24.27% than those of the control samples. Based on the 
findings in this study, the results showed that CS values 
increased at low temperatures, while it decreased with 
increasing treatment temperature. According to Table 2, 
CS values varied largely.

Average CS of the samples varied from 64.21 Nmm-2 (200°C) 
to 90.61 Nmm-2 (160°C). While the CS values increased 
at low temperatures, they decreased as the temperature 
increased in all the test groups. The maximum decrease and 
increase percentages of CS were 6.83% (200°C) and 24.27% 
(160°C), respectively. Increase in compressive strength 
parallel to the grain at low temperatures can be explained 
by the decrease in moisture content due to the increase in 
cellulose crystallinity[18], while the significant decrease in 
CS values at high temperatures can be explained by the 
chemical change and degradation of chemical compounds 
of the wood material[39]. Average CS values of the test 
samples in solid wood group agree with the literature[55]. 
In addition, Boonstra et al.[34] evaluated the influences of 
high temperatures (ranging from 150 to 260°C) on the 
mechanical properties of wood material and stated that heat 
treatment increased CS values of samples.

As shown in Table 2, average CS values of samples 
ranged from 64.21 N/mm2 (200°C) to 71.27 N/mm2 (160°C) 
in solid wood groups. At relatively low temperatures, 
some increases in CS values (up to 3.72% (at 160°C) were 
obtained. However, intensive heat treatment caused some 

Figure 5. Failure modes in compression parallel to the grain of specimens reinforced LVL. (a) Shearing failure; (b) Splitting and shearing 
failure; (c) crushing and splitting.



Perçin, O., & Ülker, O.

Polímeros, 33(1), e20230007, 20236/9

decreases (6.83% at 200°C). In PVAc-LVL group, average 
CS of samples were ranged from 69.53 N/mm2 (unheated) 
to 74.61 N/mm2 (at 160°C). In this group, CS increased from 
1.31% (unheated) to 8.03% (at 160°C) but decreased by 
6.80% (at 200°C) according to control samples. Considering 
the PF-LVL group, average CS of samples ranged from 
72.98 N/mm2 (at 200 °C) to 77.58 N/mm2 (at 160°C). The CS 
increased from 5.08% (unheated) to 11.55% (at 160°C). 
However, as the heat treatment temperature increased, CS 
value presented a declining trend.

Considering the reinforced samples, an increase of CS 
was observed for all LVL made with the addition of carbon 
fibres compared to the control samples. All the CS values in 
PVAc-RLVL group increased. The increases were 10.15% 
(unheated), 14.46% (at 140°C), 17.43% (at 160°C), 13.02% 
(at 180°C), and 1.02% (at 200°C) compared to the control 
samples. However, as the heat treatment conditions got 
harsher, CS value displayed a declining trend, especially at 
200°C. Regarding the PF-RLVL group the highest CS value 

was determined in samples that were heat treated at 160 °C. 
Average CS values of this samples significantly increased 
according to control samples. In addition, the CS values of 
the reinforced samples were higher than the massive and 
LVL samples that were heat treated at the same temperature. 
The CS value increased by 16.51% in unheated samples, by 
20.31 at 140°C, by 24.27% at 160°C, by 22.44% at 180°C, 
and by 17.66% at 200°C. In PU-RLVL group, CS value of 
all reinforced samples were higher than that of the control 
samples. Regarding the increase, rates were 10.24% for 
unheated samples, 14.59% at 140°C, 18.27% at 160°C, 
10.38% at 180°C, and 8.08% at 200°C.

The obtained results showed that the three lower 
temperatures have a positive effect on CS, while the heat 
treatment at a temperature of 200 °C reduced it. In many 
studies in the literature, it has been stated that the heat 
treatment temperatures applied approximately up to 170 °C 
are critical point for wood material[35,56,57]. Hidayat et al.
[58] reported CS values of the wood material decreased 

Table 2. Results of the Duncan tests of the Specimens.

Group of Samples Heat Treatment (°C) CS (N/mm2) (Mean 
value)

SD (Standard 
deviation)

HG (Homogeneity 
groups) Changes (%)

Solid Wood (Beech) Control 68.62 3.83 P -
140 69.11 4.31 OP 0.71
160 71.27 3.37 M 3.72
180 67.48 3.02 Q -1.69
200 64.21 3.10 S -6.83

PVAc-LVL Unheated 69.53 3.58 O 1.31
140 72.47 3.86 L 5.31
160 74.61 3.48 K 8.03
180 72.71 4.11 L 5.63
200 64.29 3.76 S -6.80

PF-LVL Unheated 72.29 4.05 L 5.08
140 74.62 3.85 K 8.04
160 77.58 3.22 I 11.55
180 77.07 3.69 IJ 10.96
200 72.98 4.04 L 5.97

PU-LVL Unheated 70.49 4.41 MN 2.65
140 72.91 3.46 L 5.88
160 75.37 3.90 K 8.96
180 69.72 4.09 NO 1.58
200 65.49 4.31 R -4.78

PVAc-RLVL Unheated 76.37 3.56 J 10.15
140 80.22 4.57 G 14.46
160 83.11 4.21 E 17.43
180 78.89 3.98 H 13.02
200 69.33 4.35 OP 1.02

PF-RLVL Unheated 82.19 4.29 F 16.51
140 86.11 3.44 C 20.31
160 90.61 3.59 A 24.27
180 88.47 3.47 B 22.44
200 83.34 3.33 DE 17.66

PU-RLVL Unheated 76.45 3.41 J 10.24
140 80.34 3.76 G 14.59
160 83.96 3.46 D 18.27
180 76.57 3.14 J 10.38
200 74.65 3.37 K 8.08
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depending on the heat treatment temperature, also there 
was no significant change in the range of 160°C to 180°C, 
however, significant strength losses were determined at 
temperatures above 200°C and 220°C. The increase in CS 
values after heat treatment at relatively low temperatures 
can be explained by the decrease in moisture content due to 
the increase in cellulose crystallinity[18], while the significant 
losses in mechanical strength at high temperatures can be 
explained by the chemical change and the degradation of 
chemical components of the wood[40,58,59]. Therefore, using 
carbon fibre fabric and PF could improve the CS of LVL. 
The maximum increase was determined in reinforced samples 
that were laminated with PF similar results found by Perçin 
and Altunok[2]. The anatomical structure and density of the 
wood material significantly affect its mechanical properties, 
including compressive strength parallel to the grains[52,60-64].

As can be seen in Figure 6, wood density had a significant 
linear relationship with CS (R2= 0.6211 and P= 0.0082). 
It was found to be a significant correlation among density 
and compression strength parallel to the grain. Wood density 
is a commonly used wood quality indicator that is related 
to other wood mechanical strength[65,66].

4. Conclusions

The results of an experimental test of the reinforcement 
by carbon fibres on compressive strength parallel to the grain 
of LVL bonded with phenol-formaldehyde (PF), polyvinyl 
acetate (PVAc) and polyurethane adhesives (PU) using 
thermally modificated beech (Fagus orientalis) veneers. 
The results showed that thermally modification reduced 
density of beech wood. Moreover, higher temperatures 
gave lower density after heat treatment. Carbon fibre 
reinforcement placed within the layers increased density in 
all reinforced specimens. The results demonstrated that the 
density values of samples were heavily dependent on carbon 
fibre, properties of the adhesives used and press conditions. 
The results also confirmed compressive strength parallel to the 
grain increased up to 160 °C after then it yielded a declining 
trend. Different failure behavior (abrupt fracture at medium 
and higher temperature) of heat-treated wood was observed 
during the CS tests. While plastic deformation forms were 
formed in the samples that were not heat-treated, sudden 
rupture types were commonly determined due to the increase 
in temperature. CS values increased at low temperature, 
while it decreased with increasing treatment temperature. 
Therefore, increase of CS was observed for all specimens 
made with the addition of carbon fibre fabrics bonded with 

different adhesive compared to the unreinforced and solid 
wood and CS of all the thermally modificated specimens were 
significantly improved. It was evident from experimental 
results, the PF adhesive provided better results compared to 
others. In future studies, carbon fiber material is an effective 
material against combustion, topics related to combustion or 
combustion after the pyrolysis process of wood.
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