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Abstract

Paper aims: Introduce a new statistical test to verify whether two small samples of variable classified into multiple 
categories are drawn from the same population. This problem can be represented by a contingency table of order (m x 2).

Originality: We do not have adequate asymptotic texts to treat this issue in all instantiation of the problem, and exact 
methods require substantial computational effort and specialized algorithms. The proposed test covers this gap.

Research method: It can be classified within design science research. The result, as well as the research process, meets 
the guidelines of that research method.

Main findings: Computational experiments show that the proposed test has similar effectiveness to the exact test, even 
when dealing with sparse data contingency tables and small values of m. Furthermore, examples show that it can work 
well in cases where the chi-square test, its numerous variations, and even in situation where the more recently developed 
methods fail.

Implications for theory and practice: This type of decision problem has received significant attention in the literature 
because it represents many real-life situations. The test proposed is as useful for small samples as Chi-square is for larger 
samples.
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1. Introduction

This paper presents a new statistical test designed for decision problems that can be represented by a 
contingency table of order (m x 2), particularly applicable to scenarios with small sample sizes and sparse 
data. The objective is to ascertain whether the data in the two columns belong to the same population (null 
hypothesis H0).

Sparse data contingency tables have received considerable attention from the literature given their capacity 
to represent real-life issues and the challenge they pose concerning the null hypothesis, especially when it comes 
to large values of categories m. However, few studies have been published addressing small samples.

The practical relevance of the subject discussed can be assessed by the extensive applicability that the 
chi-square test has in solving real-life problems. The method presented in this article allows addressing these 
types of problems, where we have small samples with sparse or non-sparse data, cases in which, as is known, 
the chi-square test does not work well.

Many issues in biology, medicine, the social and human sciences, as well as in business and industry, present 
the characteristics that require the application of the test proposed here. Some examples of problems directly 
related to social and industrial engineering are presented below (see Contador & Senne, 2016):

− Determining whether two different types of employees (machine operators and office workers, for example) in 
small companies (with few workers) have similar motivations in order to develop a single incentives program (or 
include all workers in a single program);

− Determining, through a small sample of companies from different sectors (e.g., manufacturing and services) whether 
these companies value the same characteristics in their executives to standardize human development programs;

− Determining whether executives (few in number) from different business units of a corporation have similar 
managerial capacity;

− Determining whether two different production processes, by analyzing few parts, create products with similar 
levels of quality for different characteristics (size, finishing, etc.).

To illustrate the proposed model, we can examine a specific issue known as the ‘strategies comparison 
problem’, which motivated the creation of the test here proposed. This problem arises from empirical research 
conducted in the development of the Fields and Weapons of Competition model - FWC (Contador, 2008; 
Contador et al., 2023).

The objective of this problem is to verify whether the business strategy adopted by a company is a determining 
factor of its competitiveness. In his research, Contador (2008) collected a small sample of companies and divided 
them into two groups using an appropriate criterion. One of the groups was formed by the most competitive 
companies and the other by the least competitive. The objective was to verify whether both groups adopt similar 
business strategies (null hypothesis H0). This problem can be represented by a contingency table of order (m x 
2) with a small sample.

A business strategy is represented by the Field of the competition, the imaginary locus of dispute in a market 
between products or companies for customers’ preferences, in which the company seeks to achieve and maintain 
competitive advantage. Each field of the competition represents an attribute of the product or company that 
the customer recognizes and values (Contador, 2008). According to the FWC model, companies focus their main 
competitive strategy on one of the 14 fields of competition identified by Contador (2008).

Out of curiosity, in the 19 empirical studies that validated the CAC model, involving 238 companies from 
different industrial and service sectors (Contador, 2008), it was found that there is no significant difference 
between the set of competition fields adopted by the most competitive companies and by the least competitive 
ones. This means that both groups of companies have equal perception of customer preferences and, therefore, 
the choice of business strategy does not explain why one company is more competitive than another.

In fact, what determines the company’s competitiveness is the correct alignment of its essential competence 
(core competence, according to Hamel & Prahalad, 1995) with the field of competition chosen by the company 
to compete. The author of the FWC model has demonstrated this fact in its studies and constitutes his thesis: “For 
the company to be competitive there is no condition more relevant than having high performance only in those 
few weapons that give it competitive advantage in the competition fields chosen for each product/market pair”.

Weapon of the competition is an internal company resource capable of conquering and/or maintaining 
competitive advantage. A company uses more than 100 weapons; around 40 or 50 are considered competition 
weapons and around 1/3 of them are relevant to compete in a given field of competition. If used with high 
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efficiency the field of competition becomes visible to the customer. This means the correct alignment between 
weapons and fields of competition. The studies have shown that this property explains 80% of the phenomenon 
of competitiveness (Contador, 2008).

To better understand the strategies comparison problem, let us examine the data in Table 1. This table, 
extracted from one of the studies conducted by the author of the FWC model, involves 21 companies (E1 to E21, 
as listed in Table 1). These companies were categorized into two groups based on their degree of competitiveness 
(DC), determined by the variation in income over a specific period (five years).

The respective companies declared the main fields of competition, identified by letters A to F. Thus, the 
main strategies of both groups of companies can be represented in Table 2.

Therefore, the null hypothesis H0 considers that the lists of strategies C1 and C2 belong to the same population.
This type of test may be done by determining whether the sets of values if  and ig  (see Table 3) can be 

considered to belong to the same population, where if  and ig  are the distributions of the frequencies with 
which the strategies i = 1, 2, ..., m appear in Group I and Group II of companies, respectively, so that 11

m
ii

f n
=

=∑  
and 21

m
ii

g n
=

=∑ . In Table 2, if  and ig  assume the values expressed in Table 3. Therefore, we want to find 
out if the two groups choose the classes in a similar way, that is, if variables if  and ig  can be considered as 
belonging to the same population.

There are two approaches to address this problem: 1) employing asymptotic tests, derived from the chi-square test, 
or 2) using exact tests, originating from Fisher’s exact test. Fisher’s exact test is applicable specifically to (2 x 2) tables.

The chi-square and its variations may fail in situations like that. By using simulation data, Yang et al. (2015) 
found that when 50% of cells in a contingency table have an expected count of less than five, or when there is a 
zero expected count in any cell, the p-values from likelihood ratio tests exhibit a relative error greater than 100%.

Table 2. Strategies adopted by the two groups of firms.

Groups of firms Strategies

More competitive (C1) A A B C C C D D E E

Less competitive (C2) A A A A C C D E E F F

Table 3. Frequencies of strategies (FC) for the groups of companies.

FC i

A 1 2 4

B 2 1 0

C 3 3 2

D 4 2 1

E 5 2 2

F 6 0 2

Table 1. Main field of competition and degree of competitiveness of the enterprises.

Group I: Most competitive companies Group II: Least competitive companies

Main field of competition (FC) Main field of competition (FC)

Ent Denomination Code DCi Ent Denomination Code DCi

E10 Product and brand image A 1.51 E05 Variety of models D 0.82

E13 Product delivery deadline B 1.43 E11 After-sales service C 0.80

E17 After-sales service C 1.39 E06 Product and brand image A 0.79

E19 After-sales service C 1.32 E12 Product and brand image A 0.79

E21 Variety of models D 1.25 E04 Product and brand image A 0.69

E02 Product and brand image A 1.19 E14 Presales service F 0.62

E08 Product project E 1.16 E16 Product project E 0.54

E03 After-sales service C 1.14 E07 Product and brand image A 0.47

E13 Product project E 1.11 E09 Presales service F 0.38

E01 Variety of models D 1.07 E20 Product project E 0.30

E18 After-sales service C 0.25
Caption: FC = Main field of competition ;Ent = Enterprise; DC = Degree of competitiveness  
Source: Contador (2008).
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The classic alternative offered by the literature when there are tables larger than (2 x 2) is given by Freeman & 
Halton (1951). This alternative, however, requires specific algorithms that generally demand a great computational 
effort, such as the StatXact software (StatXact, 2008).

Another alternative was offered by Hothorn et al. (2008), which presented the “coin” package for conditional 
inference. It is the computational counterpart to the theoretical structure presented by Strasser & Weber (1999). 
However, although more comprehensive than StatXact, it also demands the application of a special algorithm.

Although several authors have suggested alternatives to reduce the effort required to apply exact tests, 
adopting an appropriated asymptotic tests would still preferable because the exact methods demand special 
algorithms, which are not always readily available to the statistics user.

In view of this fact, authors have adopted different strategies, such as: a) manipulating the data contained 
in the cells or in the very chi-square function (Q); or, b) creating new statistics that can converge asymptotically 
to some known distribution, such as the normal or the chi-square (see section 2.3 and 2.4). Throughout the 
text, we will see that these arrangements do not work for the strategies comparison problem and, even in cases 
where the chi-square test fails, the proposed test works well.

Two more recently developed tests deserve our attention, presented in the sections 2.5 and 2.6, respectively: 
Zelterman (1987) and Plunkett & Park (2019). However, these statistics do not work well for small samples or 
may fail in several possible instantiations of the strategy problem, as will be seen.

We found a single article in the literature that present nonparametric asymptotic tests for small samples of 
nominal variables (Contador & Senne, 2016). However, this method only applies to some instantiations of the 
problem in focus, unlike the test proposed here (see Conclusion section).

In summary, based on the literature review, it seems that there is currently no asymptotic test available that 
effectively addresses the challenges posed by small sample sizes and sparse data. The test proposed here fills this gap.

It addresses the problem in question by constructing a new statistic. The decision variable is given by the sum 
of m independent unimodal variables, leading it to converge toward rapidly a normal probability distribution as 
the number of categories m increases. In the strategy problem, m is the number of different strategies mentioned 
by the enterprises, that is, the numbers of the lines in Table 3.

The primary finding of this study indicates that the proposed test exhibits effectiveness similar to the exact 
test. Furthermore, it performs well in scenarios where the chi-square test fails, such as in cases of small samples 
and sparse data with significant imbalance. Furthermore, it is suitable in situations where other tests, including 
Zelterman (1987) and Plunkett & Park (2019), do not work and effectively replaces methods that require special 
procedures, as suggested by Freeman & Halton (1951).

The article is structured into six sections. The second section presents the behavior of nonparametric statistics 
in addressing the problem at hand. The third section introduces the proposed test and illustrates its application. 
In the fourth section we present the architecture used in the construction of the simulation process to evaluate 
the consistency of the proposed test by comparing it to the exact test. The fifth section presents the results of 
the evaluation of the proposed test effectiveness. The last section presents de conclusions.

2. Nonparametric statistics and the problem of small samples of categorized variables

In this section, we outline the challenges associated with nonparametric statistics and provide a literature 
review on nonparametric tests of categorized variables, highlighting their limitations in addressing the specific 
problem (small samples) presented in this study.

The nonparametric tests seek to determine, from the sample data, the ρ true probability value (tail value) 
that will lead to the decision to reject or not the null hypothesis.

The value of ρ can be evaluated or calculated (p-value, as we know it) in two ways, using the notation 
adopted by Contador & Senne (2016):

a) Through the expression ρ=P(X ≥ calx ), where X represents a distribution of known probability and calx  is a value 
calculated from a function of the sample data, so that calx ∈ X; or

b) Through the expression ρ=
1

r
ii

p
=∑ , where ip , for i=1, is the probability of occurring that configuration of values 

shown by the sample, and  ip , for i = 2, ..., r, are the probabilities of any of the other (r – 1) possible configurations 
occurring more extremely than in the original sample. For better understanding, see section 2.1

These two ways of determining the p-value divide the nonparametric tests in two classes: approximate tests (or 
asymptotic), when ρ is determined through (a), described above, and exact tests, when ρ is calculated through (b).
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The exact tests can be addressed through the permutations theory, initially introduced by Fisher (1970) for 
contingency tables of dimension (2 x 2). Subsequently, this approach was extended to larger tables (see Freeman 
& Halton, 1951 and Hothorn et al., 2008).

Asymptotic tests require a large enough sample size to ensure confidence in the p-value obtained. When we 
have small samples, we should choose the exact tests that determine the true values of ip , and therefore of ρ.

In the mid-twentieth century, nonparametric methods applied to problems with ordinal variables received 
great impulse from Wilcoxon (1945), who presented a test based on the sum of the posts of two samples in 
order to verify if they were extracted from the same population. Later on, Mann and Whitney (1974) developed 
a more appropriate procedure, which originated the Wilcoxon-Mann-Whitney test.

Other important initial studies in nonparametric statistics, which also address ordinal variables, can be found 
in the following references: Chernoff & Savage (1958), Friedman (1937), Kruskal & Wallis (1952), Smirnov 
(1939) and Wald & Wolfowitz (1940).

These studies gave rise to the following nonparametric tests considered classical: sign test; Wilcoxon sign test; 
test of the Wilcoxon-Mann-Whitney station sum; chi-square test; median test; and t-test for paired samples.

In recent years, parametric statistics has been applied in control charting techniques in the cases where there 
is not enough information to justify the assumption of a specific form for the underlying process distribution. 
To this end, nonparametric or distribution-free control charts have been proposed. Information on the subject 
can be obtained at Chakraborti & Graham (2019).

For an asymptotic statistical test to work properly for the problem in question, the respective test variable 
calx , calculated from the data of the two samples and used to determine ρ =P[X ≥ calx ], must possess three 

properties: a) consider the amplitude of the difference observed in each pair of values related to each class of 
the random variable; b) allow to accumulate the differences in opposite directions observed in distinct classes (to 
prevent one to cancel the other), that is, to calculate  i if g− ; and c) adjust to a known probability distribution X.

The only test among the mentioned ones that presents the first two properties is the chi-square. However, 
in order to meet the third property, at least 80% of the cells must have a frequency higher than 5, and no 
cell can have a frequency lower than 1 (Siegel & Castellan Junior, 2006). Other tests were suggested later, like 
Campbell (1976), Zelterman (1987) and Plunkett & Park (2019).

2.1. The Fisher’s exact test

Tables 4a-c are examples of the application of Fisher’s exact test to tables with a (2 x 2) dimension, as 
presented in Contador & Senne (2016). In this example, Group I corresponds to the male sex, while Group II 
corresponds to the female sex.

In the upper line of each of these tables are the frequencies 1,  jn , j=1, 2, of people with a height of 1.80 m 
or taller. In the lower line, there are the frequencies 2, jn , j=1, 2, of people who are under 1.80 m tall. These 
data were obtained from a sample of eight men and nine women. Based on this small sample, the idea is to 
gauge whether men are taller than women are.

Consider that the H0 hypothesis establishes equality of height, and the alternative hypothesis, H1, establishes that 

men are taller than women are. To apply Fisher’s exact test to this problem, the value of ρ = 
r

ii 1
p

=∑  is determined, 

where pi is the probability of an equal or more extreme situation occurring (in the sense of Hypothesis H1) than 

that of Table 4a, maintaining the total fixed marginal values, 
2

, i,  jj 1
ni on

=
=∑  e 

2
, , 1

. o j i ji
n n

=
=∑

Observe that the sample included six men ( 1,1 )n  who were taller than 1.80 m and two ( 2,1 )n  who were shorter. 
As the test is unilateral, (due to the alternative hypothesis H1), there are two other more extreme situations than 
that of Table 4a with fixed marginal values, which are represented in Tables 4b and 4c.

Table 4. Data to exemplify Fisher’s Exact Test.

Groups Groups Groups

I II I II I II

6 3 9 7 2 9 8 1 9

2 6 8 1 7 8 0 8 8

8 9 17 8 9 17 8 9 17

(a) (b) (c)
Source: Contador & Senne (2016).
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The exact probability of observing a particular set of frequencies in a (2 x 2) table, when the marginal totals 
are considered fixed, is given by the hypergeometric distribution, resulting in ρ = 0.109, obtained from the sum 
of p(a), p(b) and p(c), given by:

, , 

, , 

! !

!

i o o ji j

i ji j

n n
P

n n
=
∏ ∏
∏  (1)

which provides ( ) 0.0968ap = ; ( ) 0.0012bp =  and ( ) 0.0004cp = , resulting ρ > 0.05, which indicates that we can’t 
reject H0 at a significance level α=0.05.

2.2. The Fisher’s exact test extension for larger tables

Consider the example from Table 5, whose data refer to the number of executives who belong to four 
business units of a large corporation and have been given high, average, and low evaluations in an executive 
promotion program. Based on this small sample, is it possible to conclude that Business Unit A has the most 
capable executives (alternative hypothesis H1)?

If the chi-square tests were applied, the constructed statistic would have (𝑙–1)×(c–1) = 6 degrees of freedom 
and would supply 2χ = 11.555. As P( 2

6 11.555χ > ) = 0.0726, from which it is concluded that there is no statistical 
evidence that Business Unit A has more capable executives.

To apply the exact test, all the possible tables are generated from the configuration of the sample data, 
maintaining fixed marginal values. The tables that originate values of 2χ ≥11.555 represent more extreme 
situations than the original sample and thus contribute with their respective values of p to compose the value of ρ.

For instance, Tables 6a and 6b are two possible arrangements obtained from Table 5. The first is 2χ =14.676, 
and should be considered a more extreme situation than the original model. Thus, its respective value of p 
contributes to the determination of ρ. Meanwhile, Table 6b provides 2χ =9.778, and its corresponding value 
of p does not contribute to the calculation of ρ.

The calculation of probability p of a particular set of frequencies for a table with l rows and c columns, 
according Freeman & Halton (1951), is made using a generalization of Equation 1, for  1 , 2, , i l= …  and  1 , 2, , j c= …

When applying the exact test to tables of dimension l ×c, all the possible tables from the originating 
data of the sample must be represented. The representation of these tables generally requires considerable 
computational effort.

This type of problem can be solved using software such as the StatXact (2008). For this particular case, this 
software arrives at ρ = 0.0398, which, contradicting the result of the chi-square test.

Several authors have suggested alternatives to reduce the effort required to apply exact tests. Mehta & 
Patel (1983) presented a Network Algorithm for performing the Exact Test in (r x c) contingency tables, which 

Table 5. Result of the evaluation of executives.

Evaluation Level
Business Units

A B C D Total

High 5 2 2 0 9

Average 0 1 0 1 2

Low 0 2 3 4 9

Total 5 5 5 5 20
Source: Contador & Senne (2016).

Table 6. Two permutations of the results of the evaluation of the executives.

Business Units Business Units

A B C D Total A B C D Total

5 2 2 0 9 4 3 2 0 9

0 0 0 2 2 1 0 0 1 2

0 3 3 3 9 0 2 3 4 9

5 5 5 5 20 5 5 5 5 20

(a) (b)
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was then considered the best algorithm to deal with this problem, according to Hirji & Johnson (1996). Some 
modifications in the Network Algorithm for (2 × c) tables were proposed in Requena & Ciudad (2006), which 
drastically reduced computation time. In certain cases, this reduction exceeds 99.5% compared to StatXact, as 
reported by the authors.

Another way of treating sparse contingency tables is by the Markov chain Monte Carlo exact tests, which are 
a powerful tool. Diaconis & Sturmfels (1998) proposed an algebraic algorithm to construct a connected chain 
over the two-way contingency tables with fixed sufficient statistics and an arbitrary configuration of structural 
zero cells. Aoki & Takemura (2005) observed that their algorithm did not seem to provide a satisfactory answer 
because the Markov basis produced by the algorithm often contains many redundant elements and is hard to 
interpret. Thus, they derived an explicit characterization of a minimal Markov basis, proved its uniqueness, and 
presented an algorithm for obtaining the unique minimal basis.

2.3. The manipulation of the Q-function

As an example of manipulation of the Q-function we can cite Lawal (1984), who suggested the modification 
( )* 1 /Q N Qβ= − , where 2 / 3 β =  e 3 / 2β = , for tests with the significance level equal to 0.05 and 0.01, respectively, 

and N is the total number of sample elements, that is, , ,     i o o ji j
N n n= =∑ ∑ .

However, the use of *Q  has been recommended under restrictive conditions, according Lin et al. (2015): 
(i) The smallest cell expectation e should satisfy the constraint e ≥ s.k(-3/2), where s is the number of cells 
having expectations (under H0) less than 3 and k=( l −1).(c−1); (ii) The dimensions of the table should satisfy 
2  l  > c ≥  l  > 2, which clearly does not correspond to the structure of the strategy problem.

Another typical recommendation in the conventional methods is adding a small constant to every cell of 
the observed table (Subbiah et al., 2008). However, this procedure disfigures the strategies comparison problem 
and cannot be used in this case.

2.4. Creating new statistical of tests

Strasser & Weber (1999) introduced the likelihood ratio chi-square test statistic represented by Equation 2.

lQ  
0

,  , , 1
1

2. ( / )
l c

i j i j i jj
i

x ln π π
=

=

= ∑∑   (2)

where , i jπ = , / , i jx N  , i jx  is given by the vector of frequencies , , ( , ; ,  i i i o i o j if g x f x g= = ), N = 1 2 ( ) n n+  and 0
, i jπ  

is the value of , i jπ  when H0 is true.
However, according to Lin et al. (2015), the chi-square approximation of this function is usually poor when 

N/(𝑙.c) < 5, where 𝑙 and c are the dimension of the table, rows, and columns numbers. In the strategy problem, 
we usually have 𝑙 = m > 3, and c = 2. In this problem, if the original table presents null cells ( 0if =  and/or 

0ig = ), it is necessary to keep the original value.

2.5. The Zelterman estimate

Zelterman (1987) proposed the following test statistic 2D  for large contingency tables with sparse values 
that, according to the author, are close to the normal distribution:

( )22 [  ] /ij ij ij ijij
D x xθ θ= − −∑  (3)

where 1, 2, , i I= …  and , 2, , j i J= …  are the indexes of lines and columns of the frequencies table    ( ,  ) ij i ix f g= , 

,

,

. ,   
ijj

ij ij iji i j
iji j

x
x N x

x
θ

 
 

   = =    
 
 

∑
∑ ∑

∑ , with 2D  mean and variance given by

( ) ( ) ( )2 . 1 . 1 .
1

NMean D I J I J
N

 = − − − − 
 and
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( ) ( ) ( ) ( )2 2 . . 4. . / 1
3

NVar D N
N

γ σ µ σ σ τ = − − − − − 
, 

being

( ) ( ) ( )1 . / 1I N I Nγ = − − − ; ( ) ( ) ( )1 . / 1J N J Nµ = − − − ,

( ) ( )2. / 2N S I Nσ = − − , ( ) ( ). / 2N T J Nτ = − −

1( )ijj
i

S x − 
=  

 ∑ ∑  and 
1( )iji

j

T x − =  
 ∑ ∑

Kim et al. (2009) compare the power of Zelterman’s statistic with the chi-square by simulation. Although 
these authors strongly recommend the use of Zelterman’s estimate when the given contingency table is very 
sparse, this estimator may fail in some situations (see section 5.2)

2.6. Plunkett and Park test

With the aim of testing the hypothesis of equality between two frequency vectors ( ){ ; ( )}i if g , i = 1, ..., m, 
j = 1, 2, under sparse data, Plunkett & Park (2019) propose using the T  statistic expressed by Equation 4, and 
demonstrate that it has distribution N(0, 1) for large values of m.

( )
1

,  
m

i ii
F f g

T σ
==∑   (4)

( )
2

2 21 2 1 1
, i i i i

i i
f g f g

F f g
n n n n

 
= + − −  
 

2 2 2
.

1 2 1 21 1 1

4    
m m m

i i
i i i i

i i i

p q
p q p q

n n n n
σ

= = =

   
= − + − +      

   ∑ ∑ ∑

1

i
i

f
p

n
=  e 

2

i
i

g
q

n
=

Although this test is very useful, as it avoids the use of exact methods and possible Chi-square failures, it 
can lead to wrong decisions for the strategy problem (see section 5.2). This occurs because the T  statistic does 
not converge to the normal probability distribution for small and moderate values of m.

3. The N-Normal nonparametric test for small samples of categorized variables

In this section, a new test is presented to verify whether two small samples of categorized variables can be 
considered belonging to the same population. Test statistic, calZ , used to determine the value of ρ(N), has a 
probability distribution that approaches the normal as the number of m classes increases.

Let F = { if } and G = { ig } be the frequency distribution of each class i = 1, ..., m of the variable as 
they appear in each of the samples A1 and A2, respectively, such that ( )i if g+  > 0. Let also n1 and n2 be the 
size of the respective samples, that is, 

1

m
ii

f
=∑ = 1 n and  

1

m
ii

g
=∑ = 2n , where n1 and n2 are moderate values 

in relation to m.
Notice that F and G represent multinomial probability distributions; therefore, each element if  

and ig , i  = 1, 2, ..., m has a binomial distribution.
Consider the probability distributions P = 1/i ip f n=    and Q = 2/i iq g n=   . If H0 is true, the mean  ia

and variance  ib of each element ip  or iq  can be determined by the expressions ( ) ( )1 2/i i ia f g n n= + +  and 

( ) ( )1/ 2
1 21 /i i ib a a n n= − + , respectively. So, if H0 is true, variable 

1

m
ii

T Y
=

=∑ , where  (  i i iY p q= − ), has a mean 

equal to zero, for m big enough, and variance equal to b = 
1
2

m
ii

b
=∑ . Notice that iY  results in a unimodal 
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distribution, since  ip and iq  have the same probabilities distribution. Thus, Z = ( ) /   T b converges rapidly to 
the (0, 1) normal distribution as m grows.

Consider now the probabilities distribution R and S, whose variables are given respectively by ( )   ,i i ir max p q=  
and ( ) ,i i is min p q= , for i = 1, 2, ..., m. Since the sets PQ = { ip } ∪ { iq } and RS = { ir } ∪ { is }, para i  = 1, 
..., m are identical, each of the variables ir  and is  keeps the same properties as variables ip  and iq .

Let be the function ( ){ }  ,  1,  2,   , i i i iV v r s i m= = − = . This function refutes all possible negative values ( i ip q− ) 
ϵ iY  to its opposite. Therefore, if H0 is true, P[   iY = a] = P[   iY = -a]= ½ P[ iV  = a], for an integer value of a. So, 
P T y≥    = ½ P  W y≥   ], for y≥0, where W =

1

m
ii

v
=∑

Therefore, it is possible to test H0 through the statistic

1
  / 

m
cal ii

Z v b
=

=∑  (5)

and calculate the tail value for the test N by

( )Nρ =  2.P  calZ Z≥   . (6)

with  calZ   being N(0, 1)
The original bilateral hypotheses test, H0: F = G against H1: F ≠ G was converted into the unilateral equivalent 

test H0: µ(W) = 0 against H1: µ(W) > 0. This change was necessary because is not possible to consider the 
direction in which the difference occurs between each if ϵF and  ig ϵG, i = 1, ..., m.

To exemplify the application of the test proposed, let’s consider the strategies’ problem mentioned in the 
Introduction. Table 1 illustrates a real study. It shows 21 firms classified in each of the two groups and their 
competitive strategy. Six strategies were mentioned by the companies, which are indicated by letters A to F.

The problem is then to test whether sets C1 = {A, A, B, C, C, C, D, D, E, E} and C2 = {A, A, A, A, C, C, D, E, 
E, F, F} of strategies mentioned by the more and less competitive companies, respectively, can be considered 
as originating from the same population (null hypothesis, H0).

Table 7 shows the application of the proposed test to strategies’ lists C1 and C2. In the last row of column 
iv  we get the variable W = 0.691, and the last row of the last column shows the value of b =

1
2

m
ii

b
=∑ = 0.346. 

From this, we can determine calZ  = 0.691/ 0.346  = 1.174, which provides ρ(N) = 2.Pr[Z ≥ 1.174] = 0.240. 
Thus, we conclude that H0 cannot be rejected, and we accept that both groups of firms choose similar sets of 
business strategies.

The main properties of the proposed test, which validate its use in problems with categorized variables in 
general, as well as in the strategy problem described here, are:

a) The variable iY  results in a unimodal distribution, since  ip and iq  have the same probabilities distribution. Thus, 

1

m
ii

T Y
=

=∑ ,  converges rapidly to the normal distribution as m grows;

b) The proposed test presents a performance similar to the Exact test according to computational simulation carried 
out to estimate the power of both tests, as shown in the next section;

Table 7. Application of the proposed test to the strategies’ lists C1 and C2.

Strategies i if ig ip iq ia iv 2 ib
A 1 2 4 .200 .364 .286 .164 .089

B 2 1 0 .100 .000 .048 .100 .020

C 3 3 2 .300 .182 .238 .118 .079

D 4 2 1 .200 .091 .143 .109 .053

E 5 2 2 .200 .182 .190 .018 .067

F 6 0 2 .000 .182 .095 .182 .038

Total 10 11 1.000 1.000 1.000 .691 .346

i i
i im m

i ii 1 i 1

f g
p ;q

f g
= =

= =

∑ ∑ ; 

i i
i m m

i ii 1 i 1

f g
a

f g
= =

+
=

+∑ ∑ ; iv = i ip q− ;

i i2b 2.a= (1- ia ) / (
m m

i ii 1 i 1
 f g

= =
+∑ ∑ )1/2
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c) As we know, the chi square test does not work satisfactorily in problems of small sample and sparse data. An example 
presented in section 5.2 confirms and shows that the proposed test leads to a correct decision in these cases;

d) The test proposed by Zelterman (1987) or by Plunkett & Park (2019) may fail for different instantiations of the 
problem, or in case of small samples, because the variables of both tests do not converge to the normal distribution 
in this situation, as will be seen later. On the other hand, the test proposed here responds well in these situations, 
as shown by some examples presented in section.5.2

4. Method to evaluation the effectiveness of the proposed test

Regarding the research method, we can classify it within design science research. This typology aims to 
develop standards, strategies and actions to improve results available in the literature, find optimal solutions 
for new problems or even compare the performance of strategies regarding the same problem (Bertrand & 
Fransoo, 2002).

The evaluation of consistency (or effectiveness) of the proposed test was carried out through its power 
curve, which provides the probability of acceptance (Pa) of the null hypothesis (H0), according to the level of 
similarity of the two samples. It was possible to extract the value of risks α and β from this curve, constructed by 
computer simulation. In this section we will present the architecture used in the construction of this simulation 
process, adopting the same procedure used by Contador & Senne (2016).

The power curve was built by varying the level of similarity between the two samples, which was defined by 
the parameter named degree of symmetry (DS) between the distributions of samples A1 and A2, as in Equation 7

1
( ) / 2

m
i ii

DS p q
=

= −∑  (7)

where ip  and iq  are the probabilities of the categorized variable originated from samples A1 and A2 for every 
i = {1, 2, ..., m}.
When i ip q=  for every i, Equation 7 provides DS = 0, and the samples obtained by simulation come from the same 
population. On the other hand, if 0ip =  when iq ≠ 0, for every i, then DS = 1, which gives rise to configurations 
with samples belonging to statistically different populations. Therefore, DS is defined in the interval [0, 1].

Appropriate values were defined for   i ip eq  in order to get samples from populations with the following 
degrees of symmetry: 0.0, 0.2, 0.4, 0.6, and 0.8. Table 8 displays values of   i ip and q  that originate samples 
drawn from populations with different values of DS for m = 6.

Problems were generated for the following five cases, defined by the sets of values of (m, n1, n2): (3, 7, 7), 
(4, 8, 8), (5, 10, 10), (6, 12, 12) and (7, 14, 14). For each of these five cases and for each of the five DS values 
previously mentioned, we determined the probability of acceptance aP  according to the exact and normal tests.

We generated 100 problems for each combination of (m, n1, n2) and DS, originating 2500 problems. For both 
test, and a given configuration (m, n1, n2), and for a given GS value, aP  could then be identified by directly 
counting the number of problems in which H0 was accepted.

We adopted the significance level α=0.05 for all tests. Thus, the acceptance of H0 occurred whenever the 
statistical test yielded value ρ= P[ calZ Z> ]> 0,05, where Z is the test variable and 

1
/ 2

m
cal ii

Z W b
=

= ∑   is the value 
of the test statistic (Equation 5), being Z normal (0, 1).

Table 8. Values of ip  and iq  to get samples with different GS values (m=6).

Class DS=0.0 DS=0.2 DS=0.4 DS=0.6 DS=0.8

( i ) ip iq ip iq ip iq ip iq ip iq
1 1/6 1/6 1/5 2/15 7/30 1/10 4/15 1/15 3/10 1/30

2 1/6 1/6 1/5 2/15 7/30 1/10 4/15 1/15 3/10 1/30

3 1/6 1/6 1/5 2/15 7/30 1/10 4/15 1/15 3/10 1/30

4 1/6 1/6 2/15 1/5 1/10 7/30 1/15 4/15 1/30 3/10

5 1/6 1/6 2/15 1/5 1/10 7/30 1/15 4/15 1/30 3/10

6 1/6 1/6 2/15 1/5 1/10 7/30 1/15 4/15 1/30 3/10
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The configuration (or instantiation) of each problem, that is, values of if  and , i= 1, … m, for both 
samples, for a given value of m, providing samples around the values of DS was obtained by the Monte Carlo 
method, described below:

Step 1. We established the correlation (see Table 9) between the rectangular random number (NA) defined 
in the interval [0, 1] and the class of variable i, where 0  a = 0,  ma  = 1 and, for i=2, ..., m-1, 1(i ia a −= +  ip ) for 
sample A1, and 1(i ia a −= + iq ) for sample A2,   and iq  mentioned in Equation 7.

Step 2. n1 rectangular random numbers (NA) were generated in the interval [0, 1] for the first sample and 
other n2 random numbers for the second sample. The if  e ig  values for the first and second samples were 
determined by counting random numbers obtained in the interval corresponding to the class of variable i.

To illustrate, suppose you want to obtain the value of 1f  for a sample with DS=0.6, n1 = n2 =12 e m = 6. 
To do this, you must simulate twelve rectangular random values in the interval [0, 1] and count how many of 
them fall in the interval [0, 4/15). To obtain the values of 1g  proceed in the same way and count how many 
values were now generated in the interval [0, 1/15).

5. Results

In this section we will present the results of the evaluation of the proposed method effectiveness obtained 
from the simulation process discussed in the previous section. A comparison of the method with other tests 
provided in the literature is too presented

5.1. The effectiveness of the proposed method

Table 10 shows the results from applying the proposed test (N-Normal) and the Exact test.  aP values are 
expressed as a percentage because they correspond directly to the number of times that hypothesis H0 was 

Table 9. Correlation between NA and the i variable class.

NA at interval Variable class ( i )

[a0, a1) 1

[a1, a2) 2

[a2, a3) 3

Etc.

[am-1, am] m

Table 10. Results of computational tests.

Probability of acceptance of H0 ( aP ) Risks (%)

DS=0.0 DS=0.2 DS=0.4 DS=0.6 DS=0.8 α β

Test Case 1: Results for (m = 3, n1 = 7, n2 = 7)

Exact 98 94 80 24 0 2 50

Normal 96 85 75 23 5 4 47

Test Case 2: Results for (m = 4, n1 = 8, n2 = 8)

Exact 97 94 78 51 12 3 59

Normal 96 90 62 36 6 4 49

Test Case 3: Results for (m = 5, n1 = 10, n2 = 10)

Exact 96 92 78 34 3 4 52

Normal 95 89 71 23 2 5 46

Test Case 4: Results for (m = 6, n1 = 12, n2 = 12)

Exact 90 94 71 28 6 10 50

Normal 87 85 64 20 4 13 43

Test Case 5: Results for (m = 7, n1 = 14, n2 = 14)

Exact 90 94 67 32 3 10 49

Normal 90 91 58 25 2 10 44
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accepted in the 100 problems tested for each DS value. Columns α and β show the values of the risks related 
to the error types I and II obtained from the tests. The values of α are given by (1 - )aP  for DS = 0, and that 
of β resulting from the arithmetic mean of aP  for the cases where DS > 0.

By analyzing the DS = 0.0 and DS = 0.8 columns of Table 10, we verified that the proposed test showed a 
performance similar to the Exact test for these two extreme cases of population similarity. Note that even for 
small dimension tables (m = 3 - first block in Table 10), we had a good performance of the proposed test, which 
may indicate a fast convergence of the test statistic Z (N-Normal test) to the normal probability distribution.

The aP  values can also be used to identify the number of tests in which it led to the right decision, that is, 
to accept hypothesis H0 when it is true (  aP values for DS = 0) and to reject it when it is false (sum of the values 
of [100- aP ] for the cases where DS> 0). These values are shown in Table 11.

Table 11 shows that, of the 2.500 problems tested, 1.548 were correctly decided by the proposed test, 
and 1.436 by the Exact test. By examining columns DS = 0 and DS > 0, we see that the proposed test gives a 
somewhat lesser protection compared to the exact test, in relation to Type I error, but exceeds it with respect 
to Type II error. This is an interesting result since type II risk cannot be controlled in hypothesis testing.

It is common to use computational simulation to estimate the power of statistical tests (Tanizaki 1997). 
Plunkett & Park (2019) also use simulation to compare their method with some others proposed in the literature.

Hence, based on the tests carried out, we can accept the hypothesis that the test proposed here is a valid 
alternative to the exact test, especially if the number of problem (m) classes is not small.

5.2. Comparison of the proposed method with other tests

In this section we observe how the proposed test positions itself in relation to traditional chi-square and 
exact method approaches. In addition we showing its contribution through comparison with the main tests 
presented in the literature.

In section 2 we showed the two ways of determining the p-value, which divides the nonparametric tests in 
two traditional approaches: approximate tests (or asymptotic) and exact tests. The proposed test belongs to the 
first one, whose most commonly used representative is chi-square. When comparing the proposed test with the 
chi-square, first of all, it is important to analyze its behavior in situations where this test does not work well.

The example in Table 12 may provide some clues. By applying the Exact test to the data in this table, we 
obtain, through StatXact (2008), ρ = 0.0013, which shows that the three samples do not come from the same 
population. The chi-square test, in turn, gives a value of ρ = 0.1342, clearly showing that for small samples 
with sparse data and strong imbalance, like the case in this example, it does not work well.

To assess the performance of the proposed test for these types of samples, it is important to note that while 
it was initially designed for two-sample problems, it can also be extended to scenarios with a larger number of 
samples. This involves applying the test to various combinations of samples, two by two.

Doing this with Table 12 data, we get ρ values of 0.002, 0.133, and 0.001 for the sample combinations A/B, 
A/C and B/C, respectively. This shows, with a high degree of confidence, that sample B comes from a different 
population than the others, in agreement with the result of the application of the exact test.

We also saw that data manipulation contained in the cells or in the chi-square function Q itself (see section 
2.3), or creating new statistics that can converge asymptotically to some known distribution, such as the normal 
or the chi-square (see section 2.4) disfigures the strategy comparison problem and cannot be used in this case. 
Therefore, they are unreliable options for treating the problem in question.

Table 12. Example of a problem with three samples.

Sample Values

A 0 7 0 0 0 0 0 1 1

B 1 1 1 1 1 1 1 0 0

C 0 8 0 0 0 0 0 0 0
Source: StatXact (2003).

Table 11. Number of problems with right decision.

Test DS=0 DS=0.2 DS=0.4 DS=0.6 DS=0.8 DS>0 Total

Exact 471 32 126 331 476 965 1436

Normal 464 60 170 373 481 1084 1548
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To compare with the Zelterman estimate (1987) consider the instantiation ( ){ ; ( )}i if g  = {(1, 0, 0, 0, 1, 1, 1, 
1, 1)t; (1, 1, 1, 1, 0, 0, 0, 0, 0)t } of the strategy problem, which shows a clear distinction between the strategies 
of the two groups of companies (they are practically opposite). While the Zelterman estimate gives ρ( 2D )=0.817, 
we have ρ(N)= 0.025, which shows that Zelterman does not work well for this instantiation while the N-Normal 
test is consistent, since there is a weak intersection of the set of strategies of both groups of companies.

The Zelterman’s estimate presents another problem. Note that if N S I= = , 0γ σ= =  we have ( )2 0Var D = , 
what happens with the instantiation given by ( ){ ; ( )}i if g  = {(0, 0, 0, 0, 1, 1, 1, 1, 1)t; (1, 1, 1, 1, 0, 0, 0, 0, 0)t}, 
an possible occurrence for the strategy problem and others. This instantiation leads to ρ(N)= 0.009, which also 
seems to be consistent, since the intersection of the sets of strategies of both groups of companies is empty

With respect to the Plunkett & Park test (2019), we observed the same phenomenon. The instantiation for 
the strategy problem mentioned above results T=1,14, providing p-value = 0,13.

Based on the computational tests conducted and the examples presented, we can assert that the proposed 
test demonstrates effectiveness comparable to the Exact test. Furthermore, it appears to perform well in scenarios 
where the chi-square and even the Zelterman estimate or the Plunkett & Park test fail.

6. Conclusions

The test proposed here arose from the idea of verifying whether the differences id =  i if g−  are statistically 
significant, and the critical issue of the proposed method lies in the assumption that the variable 

1

m
ii

T Y
=

=∑
converges to the normal distribution for small values of m.

Since  if e ig  has a binomial probability distribution, id  also maintains this property. In addition, we know 
that this distribution quickly approaches the normal one, which justifies the hypothesis assumed about the 
variable T, resulting from the sum of unimodal variables, such as the binomial.

This hypothesis is confirmed by the computational tests carried out, once it shows that, even for the case of 
m=3, the proposed test presents similar performance to the exact test. Additionally, a simulation with 30 cases 
where 1(n  + 2n ) ≤ 20, showed that it is not possible to reject the hypothesis H0:  calZ fits a normal distribution 
N(0, 1), according to the Kolmogorov-Smirnov, Jarque-Bera, D’Agostino and Shapiro-Wilk tests.

On the other hand, this is not what happens with variables 2D  of Zelterman e T of Plunkett & Park. Both 
are based on a quadratic function of the difference between  if e , ig i= 1, 2, ..., m, whose approximation to 
the normal occurs for large values of m. Both authors demonstrated convergence to the normal distribution, 
but under this condition.

In fact, submitting both variables 2D  e T to the same 30 simulated cases to the Kolmogorov-Smirnov, 
Jarque-Bera, D’Agostino and Shapiro-Wilk tests, all led to the rejection of adherence to the normal distribution 
of probabilities, when m=3.

Finally, it should be noted an important property of the proposed test. The differences |   |i if g− , considering 
the instantiation of the strategy problem given by ( ){ ; ( )}i if g  = {(0, 0, 0, 0, 1, 1, 1, 1, 1)t; (1, 1, 1, 1, 0, 0, 0, 0, 
0)t} and that given by ( ){ ; ( )}i if g  = {(2, 2, 2, 2, 1, 1, 1, 1, 1)t; (1, 1, 1, 1, 2, 2, 2, 2, 2)t} are equal.

However, from a logical standpoint, a significant distinction exists between them. In the first instantiation, 
the sets of strategies chosen by both groups of companies have an empty intersection, whereas in the second 
instantiation, there is a substantial intersection between them. The proposed test effectively captures this 
distinction, providing ρ(N) = 0.009 for the first instantiation and ρ(N) = 0.260 for the latter.

There are very few articles available in the literature that present nonparametric asymptotic tests for small 
samples of nominal variables. In fact, in a search process carried out in the Scopus database with the words 
“Nonparametric” OR “Non-parametric” AND “nominal variables” OR “categorized variables” OR “multiple 
categories” in the fields “Article title, abstract and keywords”, 56 documents appear, since 1985. If we add the 
expression “small sample” in the search process, the single article appears is Contador & Senne (2016).

These authors presented a new nonparametric asymptotic test for small samples of categorized variables based 
in the difference D between two uniform distributions of probabilities. However, the D distribution is not known. 
To get around this problem, the authors constructed, through simulation, their histogram for some values of (m, 
n1, n2) and gets the critical values of the test variable D ( Dα , α= 0,01 and 0,05). Although it has shown good 
effectiveness compared to the exact test, the method proposed does not apply for other values of (m, n1, n2).

Due to the scarcity of tests aimed at the subject of this article, the chi-square with its variations and Zelterman 
(1987) e Plunkett & Park (2019, although aimed at large samples, were included in this article because we was 
interest in verifying whether they would respond well in the case of small samples and/or sparse data, which was 
not the case. The first ones mentioned are classical methods and the other two were more recently developed.
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From everything was seen, it seems that the test proposed here becomes a viable alternative of exact tests 
(perhaps the only one) for decision problems involving two small samples classified into multiple categories, 
with sparse data or not.

Data availability

Research data is available in the body of the article.
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