Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.03617
Polímeros: Ciência e Tecnologia
Original Article

Polyurethane derived from Ricinus Communis as graft for bone defect treatments

Sousa, Tatiana Peixoto Telles de; Costa, Maria Silvana Totti da; Guilherme, Renata; Orcini, Wilson; Holgado, Leandro de Andrade; Silveira, Elcia Maria Varize; Tavano, Orivaldo; Magdalena, Aroldo Geraldo; Catanzaro-Guimarães, Sergio Augusto; Kinoshita, Angela

Downloads: 0
Views: 1245

Abstract

Abstract: This work evaluated polyurethane (Polyquil®) as a graft for treatment of bone defects. Bone defects of 1.5 × 0.5 cm were made in the calvaria of 16 rabbits. Eight animals had their defects treated with Polyurethane (Treated) and 8 of them had their defects filled with blood clot (Control). In the second experiment, segmental defects of 0.5 cm were performed at the zygomatic arch of 16 rabbits. Eight animals were treated by guided bone regeneration, using a latex membrane, associated to grafting of polyurethane while the others were not treated (Control). The bone tissue morphometry in the craniotomy experiment resulted in a higher bone volume in the Treated group at 60 days (p <0.05, t student test). Microscopic and radiographic images demonstrate the formation of a bone bridge in the segmental defect, 60 and 120 days after surgery in the Treated group, different from the Control group with incomplete healing.

Keywords

biomaterial, bone defect, graft, polyurethane

References

Derceli, J. R., Fais, L. M., & Pinelli, L. A. (2014). A castor oil-containing dental luting agent: effects of cyclic loading and storage time on flexural strenght. Journal of Applied Oral Science, 22(6), 496-501. http://dx.doi.org/10.1590/1678-775720140069. PMid:25591018.

Monteiro, A. S., Macedo, L. G., Macedo, N.-L., & Balducci, I. (2010). Polyurethane and PTFE membranes for guided bone regeneration: histopathological and ultrastructural evaluation. Medicina Oral, Patologia Oral y Cirugia Bucal, 15(2), e401-e406. http://dx.doi.org/10.4317/medoral.15.e401. PMid:19767699.

Lim, T. K. (2012). Ricinus communis. In T. K. Lim (Ed.), Edible medicinal and non-medicinal plants. Netherlands: Springer. http://dx.doi.org/10.1007/978-94-007-1764-0_64.

Eglin, D., Grad, S., Gogolewski, S., & Alini, M. (2010). Farsenol modified biodegradable polyurethanes for cartilage tissue engineering. Journal of Biomedical Materials Research. Part A, 92(1), 393-408. http://dx.doi.org/10.1002/jbm.a.32385. PMid:19191318.

Laureano, J. R., Fo., Andrade, E. S. S., Albergaria-Barbosa, J. R., Camargo, I. B., & Garcia, R. R. (2009). Effects of demineralized bone matrix and a ‘Ricinus communis ’ polymer on bone regeneration: a histological study in rabbit calvaria. Journal of Oral Science, 51(3), 451-456. http://dx.doi.org/10.2334/josnusd.51.451. PMid:19776514.

Barros, V. M. R., Rosa, A. L., Beloti, M. M., & Chierice, G. (2003). In vivo biocompatibility of three different chemical compositions of Ricinus communis polyurethane. Journal of Biomedical Materials Research. Part A, 67(1), 235-239. http://dx.doi.org/10.1002/jbm.a.10105. PMid:14517881.

Cangemi, J. M., Claro, S., No., Chierice, G. O., & Santos, A. M. (2006). Study of the biodegradation of a polymer derived from castor oil by scanning electron microscopy, thermogravimetry and infrared spectroscopy. Polímeros: Ciência e Tecnologia , 16(2), 129-135. http://dx.doi.org/10.1590/S0104-14282006000200013.

Trovati, G., Sanches, E. A., Claro, S., No., Mascarenhas, Y. P., & Chierice, G. O. (2009). Characterization of polyurethane resins by FTIR, TGA, and XRD. Journal of Applied Polymer Science, 115(1), 263-268. http://dx.doi.org/10.1002/app.31096.

Jena, J., & Gupta, A. K. (2012). Ricinus communis linn: a phytopharmacological review. International Journal of Pharmacy and Pharmaceutical Sciences, 4(4), 25-29. Retrieved in 2017, May 2, from http://www.ijppsjournal.com/Vol4Issue4/4695.pdf

Leite, F. R. M., & Ramalho, L. T. O. (2008). Bone regeneration after demineralized bone matrix and castor oil (Ricinus communis). Journal of Applied Oral Science, 16(2), 122-126. http://dx.doi.org/10.1590/S1678-77572008000200008. PMid:19089203.

Belmonte, G. C., Catanzaro-Guimarães, S. A., Sousa, T. P. T., Carvalho, R. S., Kinoshita, A., & Chierici, G. O. (2013). Qualitative histologic evaluation of the tissue reaction to the polyurethane resin (ricinus communis-based biopolymer) implantation assessed by light and scanning electron microscopy. Polímeros: Ciência e Tecnologia , 23(4), 462-467. http://dx.doi.org/10.4322/polimeros.2013.063.

Saran, W. R., Chierice, G. O., Silva, R. A. B., Queiroz, A. M., Paula-Silva, F. W. G., & Silva, L. A. B. (2014). Castor oil polymer induces bone formation with high matrix metalloproteinase‐2 expression. Journal of Biomedical Materials Research. Part A, 102(2), 324-331. http://dx.doi.org/10.1002/jbm.a.34696. PMid:23670892.

Frazilio, F. O., Rossi, R., Negrini, J. M., No., Facco, G. G., Ovando, T. M., & Fialho, M. P. F. (2006). Use of castor oil polyurethane in an alternative technique for medial patella surgical correction in dogs. Acta Cirurgica Brasileira, 21(Suppl 4), 74-79. http://dx.doi.org/10.1590/S0102-86502006001000016. PMid:17293971.

Pereira-Júnior, O. C. M., Rahal, S. C., Iamaguti, P., Felisbino, S. L., Pavan, P. T., & Vulcano, L. C. (2007). Comparison between polyurethanes containing castor oil (soft segment) and cancellous bone autograft in the treatment of segmental bone defect induced in rabbits. Journal of Biomaterials Applications, 21(3), 283-297. http://dx.doi.org/10.1177/0885328206063526. PMid:16543284.

Boeck-Neto, R., Gabrielli, M., Shibli, J., Marcantonio, E., Lia, R. C. C., & Marcantonio, E., Jr. (2005). Histomorphometric evaluation of human sinus floor augmentation healing responses to placement of calcium phosphate or ricinus communis polymer associated with autogenous bone. Clinical Implant Dentistry and Related Research, 7(4), 181-188. http://dx.doi.org/10.1111/j.1708-8208.2005.tb00063.x. PMid:16336909.

Rana, M., Dhamija, H., Prashar, B., & Sharma, S. (2012). Ricinus communi s L.: a review. International Journal of Chemtech Research, 4(4), 706-711. Retrieved in 2017, May 2, from http://sphinxsai.com/2012/oct-dec/Pharmpdf/PT=48(1706-1711)OD12.pdf

Beloti, M. M., Oliveira, P. T., Tagliani, M. M., & Rosa, A. L. (2008). Bone cell responses to the composite of Ricinus communis polyurethane and alkaline phosphatase. Journal of Biomedical Materials Research. Part A, 84(2), 435-441. http://dx.doi.org/10.1002/jbm.a.31344. PMid:17618485.

Nacer, R. S., Poppi, R. R., Carvalho, P. D. T. C., Silva, B. A. K., Odashiro, A. N., Silva, I. S., Delben, J. R. J., & Delben, A. A. S. T. (2012). Castor oil polyurethane containing silica nanoparticles as filling material of bone defect in rats. Acta Cirurgica Brasileira , 27(1), 56-62. http://dx.doi.org/10.1590/S0102-86502012000100010. PMid:22159440.

Barros, V. M., Rosa, A. L., Beloti, M. M., & Chierice, G. (2003). In vivo biocompatibility of three different chemical compositions of Ricinus communis polyurethane. Journal of Biomedical Materials Research. Part A, 67(1), 235-239. http://dx.doi.org/10.1002/jbm.a.10105. PMid:14517881.

Graça, Y. L. S. S., Opolski, A. C., Barboza, B. E. G., Erbano, B. O., Mazzaro, C. C., Klostermann, F. C., Sucharski, E. E., & Kubrusly, L. F. (2014). Biocompatibility of Ricinus communis polymer with addition of calcium carbonate compared to titanium: experimental study in guinea pigs. Revista Brasileira de Cirurgia Cardiovascular, 29(2), 272-278. http://dx.doi.org/10.5935/1678-9741.20140030. PMid:25140479.

Mendonça, R. J., Maurício, V. B., Teixeira, Lde. B., Lachat, J. J., & Coutinho-Netto, J. (2010). Increased vascular permeability, angiogenesis and wound healing induced by the serum of natural latex of the rubber tree Hevea brasiliensis. Phytotherapy Research , 24(5), 764-768. http://dx.doi.org/10.1002/ptr.3043. PMid:19943314.

Herculano, R. D., Silva, C. P., Ereno, C., Guimaraes, S. A. C., Kinoshita, A., & Graeff, C. F. O. (2009). Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Materials Research, 12(2), 253-256. http://dx.doi.org/10.1590/S1516-14392009000200023.

Ereno, C., Guimarães, S. A. C., Pasetto, S., Herculano, R. D., Silva, C. P., Graeff, C. F. O., Tavano, O., Baffa, O., & Kinoshita, A. (2010). Latex use as an occlusive membrane for guided bone regeneration. Journal of Biomedical Materials Research. Part A , 95(3), 932-939. http://dx.doi.org/10.1002/jbm.a.32919. PMid:20845492.

Moura, J. M. L., Ferreira, J. F., Marques, L., Holgado, L., Graeff, C. F. O., & Kinoshita, A. (2014). Comparison of the performance of natural latex membranes prepared with different procedures and PTFE membrane in guided bone regeneration (GBR) in rabbits. Journal of Materials Science: Materials in Medicine, 25(9), 2111-2120. http://dx.doi.org/10.1007/s10856-014-5241-1. PMid:24849612.

Floriano, J., Mota, L., Furtado, E., Rossetto, V., & Graeff, C. O. (2013). Biocompatibility studies of natural rubber latex from different tree clones and collection methods. Journal of Materials Science. Materials in Medicine, 25(2), 461-470. http://dx.doi.org/10.1007/s10856-013-5089-9. PMid:24202915.

Balabanian, C. A. C. A., Coutinho-Netto, J., Lamano-Carvalho, T. L., Lacerda, S. A., & Brentegani, L. G. (2006). Biocompatibility of natural latex implanted into dental alveolys of rats. Journal of Oral Science, 48(4), 201-205. http://dx.doi.org/10.2334/josnusd.48.201. PMid:17220617.

Paula, J. S., Ribeiro, V. R. C., Sampaio, R. B., Mendonca, R. J., Haddad, A., Tedesco, A. C., Coutinho-Netto, J., Haendchen, H. A., & Jorge, R. (2011). Rabbit Rubeosis Iridis Induced by Intravitreal Latex-derived Angiogenic Fraction. Current Eye Research , 36(9), 857-859. http://dx.doi.org/10.3109/02713683.2011.576797. PMid:21599469.

Ferreira, M., Mendonça, R. J., Coutinho-Netto, J., & Mulato, M. (2009). Angiogenic properties of natural rubber latex biomembranes and the serum fraction of Hevea brasiliensis. Brazilian Journal of Physics, 39(3), 564-569. http://dx.doi.org/10.1590/S0103-97332009000500010.

Herculano, R. D., Silva, C. P., Ereno, C., Guimarães, S. A. C., Kinoshita, A., & Graeff, C. F. O. (2009). Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Materials Research, 12(2), 253-256. http://dx.doi.org/10.1590/S1516-14392009000200023.

Guidelli, É. J., Kinoshita, A., Ramos, A. P., & Baffa, O. (2013). Silver nanoparticles delivery system based on natural rubber latex membranes. Journal of Nanoparticle Research, 15(4), 1536. http://dx.doi.org/10.1007/s11051-013-1536-2.

Herculano, R. D., Tzu, L. C., Silva, C. P., Brunello, C. A., Queiroz, Á. A. A., Kinoshita, A., & Graeff, C. F. O. (2011). Nitric oxide release using natural rubber latex as matrix. Materials Research, 14(3), 355-359. http://dx.doi.org/10.1590/S1516-14392011005000055.

Hollinger, J. O., & Kleinschmidt, J. C. (1990). The critical size defect as an experimental model to test bone repair materials. The Journal of Craniofacial Surgery , 1(1), 60-68. http://dx.doi.org/10.1097/00001665-199001000-00011. PMid:1965154.

Garber, J. C. (2011). Guide for the care and use of laboratory animals. Washington: National Academies Press. Retrieved in 2017, May 2, from https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals.pdf

Neves-Junior, W. F. P., Ferreira, M., Alves, M. C. O., Graeff, C. F. O., Mulato, M., Coutinho-Netto, J., & Bernardes, M. S. (2006). Influence of fabrication process on the final properties of natural-rubber latex tubes for vascular prosthesis. Brazilian Journal of Physics , 36(2B), 586-591. http://dx.doi.org/10.1590/S0103-97332006000400021.
 

5b7c67000e88252337896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections