Caracterização Quantitativa da Distribuição Seqüencial dos Meros em Copolímeros de Estireno e Butadieno por RMN de ¹³C

Sebastião V. Canevarolo

Resumo: Estudaram-se vários tipos de copolímeros à base de estireno/butadieno: SBR aleatórios, SSBR blocados (parte da cadeia é um copolímero aleatório S-B e parte é um bloco S) e copolímeros tribloco TR pela técnica de Ressônancia Magnética Nuclear por núcleo de carbono-13 (¹³C). Analisou-se quantitativamente a concentração do comonômero de estireno (%S) presente, a distribuição dos meros de estireno e butadieno na cadeia polimérica pela medida da distribuição de sequências S-B e B-S-B (características das porções aleatórias do copolímero), bem como a concentração dos isômeros na fase de polibutadieno.

Palavras-chave: Copolímero estireno-butadieno, SBR, copolímero em bloco, SBS, borracha termoplástica, RMN de ¹³C, análise quantitativa

Introdução

Borrachas sintéticas SBR foram desenvolvidas na década de 40 para substituir a borracha natural, sendo basicamente compostas por copolímeros aleatórios de estireno e butadieno com 20% a 40%, em peso, de estireno. Recentemente, sua estrutura molecular tem sido ligeiramente alterada, fazendo-se incluir blocos rígidos de poliestireno no copolímero aleatório original. Para a obtenção de tal configuração, é necessário que a copolimerização seja feita por via aniônica (em solução catalisada com compostos de alquil-lítio, *i.e.*, técnica de polímeros vivos). Inicia-se a polimerização aniônica com os dois comonômeros estireno e butadieno, prosseguindo-se até o consumo total, quando então é adicionado estireno puro para a formação do bloco rígido. Como a reatividade entre moléculas de butadieno é muito superior à reatividade desta com estireno ou mesmo à de estireno com estireno, existe uma tendência natural ao consumo preferencial de butadieno. Isto tende a formar blocos de estireno ainda na primeira fase da polimerização, aumentando o tamanho final do bloco de estireno.

Para uma caracterização adequada da estrutura química, algumas variáveis são importantes, pois determinam as propriedades finais do copolímero:

i) Na porção aleatória da cadeia: fração de estireno, distribuição aleatória do estireno e tipo e concentração de isômeros do monômero de butadieno.

ii) No bloco de estireno: peso molecular do bloco e qualidade do bloco.

Sebastião V. Canevarolo, Departamento de Engenharia de Materiais/UFSCar, Via Washington Luiz, Km 235 - CP 676 - CEP 13565-905, São Carlos - SP. iii) De toda a cadeia polimérica: fração total de estireno, peso molecular médio total e sua distribuição.

Um caso extremo de copolímero blocado é a borracha termoplástica constituída por um copolímero em bloco (linear ou estrelado). A polimerização, do tipo aniônica, dá-se inicialmente com a adição de estireno, prosseguindo até seu consumo total (Mn de 6.000 a 15.000 g/mol), gerando o primeiro bloco rígido. A seguir, adiciona-se butadieno e a reação continua com o crescimento do bloco elastomérico central (Mn de 80.000 a 150.000 g/mol). Após o total consumo do butadieno, inicia-se a terceira e última etapa, com a adição de monômero estireno para a formação de copolímeros tribloco ou um agente de acoplagem para a formação de copolímeros estrelados (a funcionalidade desse agente define o número de braços). Esta técnica teoricamente produz blocos perfeitos, i.e., com tamanhos (peso molecular médio) bem definidos, distribuição de peso molecular estreita e principalmente uma interface entre os blocos muito bem definida, não havendo a presença de meros diferentes entre os blocos¹⁻⁴.

A caracterização morfológica e a estrutural básica de copolímeros blocados normalmente tem sido feita utilizando-se pelo menos as seguintes técnicas⁵⁻⁸:

1) Microscopia Eletrônica de Transmissão (MET) para a visualização morfológica das fases presentes, normalmente pelo tingimento da fase borrachosa com tetróxido de ósmio⁹⁻¹¹.

2) Cromatografia por Exclusão de Tamanho (GPC) para a determinação do peso molecular médio total do copolímero (para se obter o peso molecular médio individual de cada bloco em copolímeros triblocos pode-se retirar amostras do reator após cada etapa durante a polimerização aniônica).

3) Espectrometria no Infravermelho (IR) na determinação quantitativa dos comonômeros (%S) e dos isômeros (cis, trans e vinil) presentes no bloco elastomérico¹².

4) Ressônancia Magnética Nuclear (¹H e ¹³C) para a identificação e determinação quantitativa dos comonômeros (S%), concentração das ressônancias do butadieno (cis-1,4, trans 1,4 e vinil 1,2) e mais recentemente a distribuição sequencial dos comonômeros de butadieno e estireno formando-se díades, tríades, etc. Usando-se substâncias modelos foi possível fazer a atribuição dos sinais presentes em espectros de RMN de ¹³C de polibutadienos¹³ e RMN de ¹H e ¹³C de copolímeros SBR^{14,15}. Tem sido possível estimar teoricamente a freqüência das possíveis seqüências em copolímeros SBR, incluíndo-se díades e tríades, utilizando a simulação Monte Carlo¹⁶. As Tabelas 1 e 2 abaixo apresentam os principais sinais e suas atribuições presentes em copolímeros S/B, com os átomos de carbono numerados como se segue:

1 2 3 4
--CH₂--CH = CH--CH₂--;
1,4 Butadieno
1 2
--CH₂--CH (CH = CH₂)--;
1,2 Vinil

$$\beta \alpha$$

--CH₂--CH (C₆H₁₅)--
Estireno

Para o anel benzênico (Φ), a numeração usada é C1 para o carbono quaternário, C2 orto, C3 meta e C4 para.

Experimental

Os copolímeros de estireno/butadieno SBR aleatórios e SSBR blocados (parte da cadeia é um copolímero aleatório S-B e parte é um bloco S), bem como copolímeros em bloco TR, foram gentilmente fornecidos pela COPERBO (TR-1 e TR-2). Um terceiro copolímero em bloco (TR-3) é um produto comercial da SHELL. Suas características físicas nominais principais estão apresentadas na Tabela 3 abaixo.

Os espectros de RMN foram realizados em um espectrômetro de RMN Varian Unity Plus com um campo magnético de 9,4 Tesla. Foi observado o núcleo de C na freqüência de 100,57 MHz. As amostras foram dissolvidas em clorofórmio deuterado (CDCl₃), em tubos de 5 mm. Foi usado pulso de 90°, número de repetições de 2.500 espectros, faixa espectral de 25.000 Hz e intervalo entre pulsos de 15 s, de modo a obter-se condições de análise quantitativa. Foi feita a integração dos sinais nas regiões de 20 a 50 ppm (sinais de carbono alifático) e 110 a 150 ppm (sinais de carbono olefínico e aromático), como citados nas Tabelas 1 e 2.

Resultados e Discussões

A Fig. 1 ilustra o espectro de RMN de ¹³C de três amostras características: um copolímero exclusivamente aleatório SBR, um copolímero blocado SSBR

Sinal	Observado ^a	Calculado ^a	Seqüência	Cb
1	24,9	24,87	C-v	4
2	25,2	27,17	C-s	4
3	27,3	27,32-27,44	C-1,4	4
4	30,1	30,31	T-v	4
5	30,4	30,54	T-s	4
6	32,7	32,76-32,88	T-1,4	4
7	33,9-34,3	35,21-35,33	1,4-V-1,4	1
8	35,4-36,0	35,42-35,51	b-s-C	1
		35,88-36,11	1,4-V-b	1
		36,04-36,07	1,4-S-b	β
		36,89-36,95	1,4-S-1,4	β
9	38,1	38,17	1,4-v-T	1
10	40,1	40,20	S	α
11	42,95-43,6	42,92-43,47	b-S-1,4	α
		43,90-44,31	1,4-V-1,4	2
12	45,3-45,8	45,63-46,04	1,4-S-1,4	α

Tabela 1. Atribuição para os sinais de carbono alifático em copolímeros S/B^{15} .

(SSBR-1) e um copolímero tribloco TR (TR-3). Na Fig. 1a é apresentada a região de emissão de carbonos alifáticos (de 20 a 50 ppm) e na Fig. 1b, a região de carbono olefínico e aromático (de 110 a 150 ppm). A atribuição dos sinais numerados encontra-se nas Tabelas 2 e 3.

Tabela 2. Atribuição para os sinais de carbono olefínico e aromático em copolímeros S/B^{17}

Sinal	Observado ^a	Sequência	C ^b
13	113,9-114,2	v	4
14	125,4-125,9	Φ	4
15	127,7-128,4	Φ	2+3
16	129,4	C-t	3
	129,6	C-c	3
	130	T-c + T-t	3
17	131,3	T-v	2
18	142,6	V	3
19	145,2-146,8	Φ	1

^a Deslocamento químico (δ) em ppm.

^b Sinal atribuído ao carbono do mero denotado por letras maiúsculas na sequência indicada; S estireno; C cis; T trans; V vinil; b butadieno; 1,4 butadieno cis + trans. ^a Deslocamento químico (δ) em ppm.

^b Sinal atribuído ao carbono do mero denotado por letras maiúsculas na sequência indicada; S, estireno; C, cis; T, trans; V, vinil; b, butadieno; 1,4 butadieno cis + trans.

Φ anel benzênico (C1, carbono quaternário; C2 orto; C3 meta e C4 para).

Figura 1. Espectro de RMN de ¹³C, a 100,54 MHz de copolímeros estireno/butadieno: SBR (copolímero aleatório), SSBR-1 (copolímero blocado) e TR-3 (copolímero tribloco). (a) região de 20 a 50 ppm (b) região de 110 a 150 ppm.

Tabela 3. Características físicas nominais dos copolímeros de estireno/butadieno.

Copolímer	о Тіро	S% total	S% blocado	Mn ^a (g/mol)	Mw ^a (g/mol)
SBR	aleatório	25	0	84	211
SSBR-1	blocado	25	18	35	158
SSBR-2	blocado	48	30	58	148
TR-1	tribloco	40	40	68	76
TR-2	tribloco	38	38	-	-
TR-3	tribloco	28	28	71	86

a) Determinado por cromatografia líquida por exclusão de tamanho (x10³).

A região de 20 a 50 ppm corresponde a sinais de carbonos alifáticos, ou seja, carbonos 1 e 4 no polibutadieno α e β no poliestireno. Iniciamos analisando os sinais comuns a todas as amostras: os dois sinais mais intensos, a 27,3 ppm e a 30,4 ppm, referem-se à soma das emissões dos carbonos 1 e 4 dos isômeros cis e trans, respectivamente. Os demais sinais, com menor intensidade, incluem C4 do isômero cis ligado a vinil a 24.9 ppm, C4 do isômero trans ligado a vinil a 30.1 ppm, C1 do isômero vinil a 33.9 ppm, C1 do isômero trans ligado a vinil a 38.1 ppm, C α do estireno a 40.1 ppm e C2 do isômero vinil a 43.4 ppm.

A região de 110 a 150 ppm corresponde a sinais relativos a carbonos olefínicos do isômero vinil e a carbonos aromáticos do estireno. Os sinais incluem C4 do isômero vinil a 114,2 ppm, C4 do carbono para no anel ressônancia do estireno a 125,8 ppm, C2 + C3 dos carbonos orto e para também do anel benzênico do estireno de 127,7 a 128,4 ppm, sinal do C3 do isômero cis subdividido a 129,4 ppm quando ligado a um isômero trans e 129,6 ppm quando ligado a outro isômero cis, subdivisão do sinal do C3 do isômero trans quando este está ligado a cis e trans a 130,0 ppm ou a 131,3 ppm quando ligado ao isômero vinil, C3 do isômero vinil a 142,6 ppm e finalmente sinal 19 relativo ao carbono quaternário C1 do anel benzênico a 145,2 ppm.

Na região de 20 a 50 ppm observa-se que alguns sinais presentes nas amostras SBR e SSBR não se encontram no espectro de TR. São eles: sinal a 25,2 ppm relativo ao C4 do isômero butadieno-cis quando ligado a estireno (C-s), sinal a 30,4 ppm relativo ao carbono C4 do isômero butadieno-trans quando ligado a estireno (T-s), sinal a 35,7 ppm relativo a várias emissões, incluindo-se C1 do isômero cis quando ligado a estireno (b-s-C) e C β de estireno quando flanqueado dos dois lados por butadieno (1,4-S-b, 1,4-S-1,4) e finalmente tem-se o sinal a 45,7 ppm relativo ao Ca de estireno quando flanqueado dos dois lados por butadieno (1,4-S-1,4). Todos esses sinais correspondem a seqüências com ligação estireno/butadieno, sendo os dois primeiros referentes a díades B-S e os dois últimos a tríades B-S-B (o sinal ainda inclui contribuição de uma tríade B-B-B). Copolímeros aleatórios normalmente apresentam uma alta concentração destas seqüências, que por outro lado devem ser inexistentes (ou baixíssimas) em copolímeros em bloco.

O sinal centrado a 145,3 ppm e atribuído ao carbono quaternário C1 do anel benzênico do estireno pode conter vários picos relacionados a sua taticidade e se encontra em uma região do espectro livre de outras contribuições. A concentração de estireno no copolímero (S%) pode ser determinada pela soma das integrações das áreas relativas a todos os seus sinais presentes relacionados com os carbonos C1, C2+C3, C4 e C α (Equação 9). A mesma relação também pode ser empregada no cálculo quantitativo das frações porcentuais das demais seqüências S/B.

A partir da identificação dos sinais e de sua integração individualizada é possível proceder-se a uma análise quantitativa detalhada envolvendo a determinação da concentração de várias espécies presentes no copolímero S/B, como indicadas abaixo:

A) Concentração da fase de estireno:

$$S\% = \frac{100\% (104S)}{(104S + 54B)} \tag{1}$$

A contribuição de cada componente pode ser obtida a partir da integração e soma dos seus picos presentes no espectro. Assim, tem-se:

$$S = \frac{(I_{10} + I_{12} + I_{14} + I_{15} + I_{19})}{7}$$
(2)

$$B = \frac{[I_{1} + I_{2} + I_{3} + I_{4} + I_{5} + I_{6} + I_{7} + I_{9} + I_{13}]}{2}$$
(3)

sendo I_x a área integrada sob o pico x. O denominador 7 advém de se utilizar para o cálculo todos os átomos de carbono do anel benzênico (6) mais o carbono C α do estireno. No caso do butadieno, utilizaram somente as contribuições relativas aos carbonos C1 e C4.

B) Concentração dos isômeros da fase de butadieno:

%Cis =
$$\frac{100\% [I_1 + I_2 + I_3]}{2B}$$

$$\% \text{Trans} = \frac{100\% [I_4 + I_5 + I_6 + I_9]}{2B}$$

$$\% \text{Vinil} = \frac{100\% \,[\text{I}_7 + \text{I}_{13}]}{2\text{B}} \tag{6}$$

Esta maneira de calcular resulta em um total de isômeros de 100%, ou seja, não leva em conta a presença e concentração da fase de estireno.

C) Seqüência díade aleatória S-B com relação ao copolímero total:

$$\%(s - C) = \frac{100\% (54I_2)}{(104S + 54B)}$$
(7)

$$\%(s - T) = \frac{100\% (54I_5)}{(104S + 54B)}$$
(8)

Neste caso, levou-se em conta somente ligações S-B cis (s-C) e S-B trans (s-T), pois sinais relativos à ligação S-B vinil (s-V) não foram identificados. De qualquer modo, essa ligação, se presente, deve contribuir pouco, pois não só a concentração do isômero vinil é baixa (~10%) como também aparece, durante a polimerização, um forte efeito estérico entre esses dois meros (S e V), contribuindo ainda mais para reduzir a concentração desta ligação.

D) Seqüência tríade aleatória b-S-b com relação ao copolímero total:

$$\%(b - S - b) = \frac{100\% (104I_{12})}{(104S + 54B)}$$
(9)

E) Seqüência tríade aleatória (b-S-b) + (b-s-C)
 (4) com relação ao copolímero total:

(5)
$$\%[(b-S-b)+(b-s-C)] = \frac{100\%(104I_8)}{(104S+54B)}$$
 (10)

As expressões acima foram aplicadas às amostras analisadas, obtendo-se os resultados da Tabela 4.

Conclusões

Seqüências aleatórias S-B e B-S-B presentes em copolímeros à base de estireno-butadieno (sejam aleatórios, blocados ou em bloco) podem ser quantificadas através da técnica de Ressonância Magnética Nuclear de 13C. Os sinais característicos destas seqüências são: para díades B-S, C-s a 25,2 ppm e T-s a 30,4 ppm, para tríades B-S-B, b-s-C e 1,4-S-1,4 a 35,7 ppm e 1,4-S-1,4 a 45,7 ppm. Copolímeros aleatórios normalmente apresentam uma alta concentração destas seqüências, que, por outro lado, são sensivelmente reduzidas em copolímeros em bloco. Assim, a amostra TR-1 apresenta 9.08% do estireno ligado a meros de butadieno, valor que se reduz de maneira significativa na amostra TR-2 (3.24%) e torna-se negligível na amostra TR-3.

Agradecimentos

À Srta. Claudia M.G. de Souza, pela realização dos ensaios de RMN de ¹³C no Centro de Caracterização e Desenvolvimento de Materiais CCDM (UFSCar / UNESP), e à Companhia Pernambucana de Borracha Sintética COPERBO (PE), pela concordância na divulgação dos resultados.

Tabela 4. Análise quantitativa das sequências S-B em copolímeros de estireno-butadieno.

	Copolímero					
Composição	SBR	SSBR-1	SSBR-2	TR-1	TR-2	TR-3
Fases						
S%	28.9	29.4	56.8	46.9	42.9	32.5
%Cis	35.6	37.0	33.9	39.2	36.6	35.8
%Trans	56.4	52.4	55.6	53.0	53.7	52.6
%Vinil	8.0	10.6	10.5	7.8	9.7	11.6
Seqüências						
% (s-C)	3.73	2.82	2.29	1.16	0.0	0.0
% (s-T)	5.27	2.68	4.68	1.77	0.0	0.0
% (b-S-b)	11.23	5.75	15.24	9.08	3.24	0.0
% (b-S-b)+(b-s-C)	14.53	4.8	10.72	4.34	0.02	0.0

Referências Bibliográficas

- 1. Folkes, M.J. (ed.), "Processing, Structure and Properties of Block Copolymers" Elsevier, London (1985).
- Canevarolo, S.V. "Properties and uses of thermo- plastic rubbers" Handbook of Polymer Science and Technology Parte A, Vol 2, 3-60 - Marcel Dekker Publ. New York. Invited publication (1989).
- Canevarolo, S.V.; Birley, A.W. "Influence of hard segment size on the melt transition temperature of thermoplastic rubbers". Br. Polym. J., 19 (1) 43- 47 (1987).
- Canevarolo, S.V.; Mattoso, L.H.C. "Preferential plasticization of SBS - triblock copolymer". Br. Polym. J., 22 (2) 137-141 (1990).
- 5. Jelinski, L.W. "Nuclear magnetic resonance spectroscopy" Anal. chem. 62, p. 212-223 (1990).
- Smith, C.G.; Nyquist, R.A.; Smith, P.B.; Pasztor, A. J.; Martin, S. J. - "Analysis of synthetic polymers" Anal. Chem. 63, p.11-32 (1991).
- 7. Haw, J.F.; "Nuclear magnetic resonance spectroscopy" Anal. Chem. 64, p.243-254 (1992).
- Smith, C.G.; Smith, P.B.; Pasztor, A.J.; Mackelvy, M.L.; Meunier, D.M.; Froelicher, S.W.; Ellaboudy, A.S.- "Analysis of synthetic polymers and rubbers" Anal. Chem. 65, p.217-243 (1993).
- 9. Sawyer, L.C.; Grubb, D.T. "Polymer Microscopy" Chapman and Hall Ltd. (1987).

- Silveira, A.D.; Canevarolo, S.V. Microestrutura de borracha termoplástica SBS, Anais 9° CBECI-MAT, Águas de São Pedro (1990).
- Canevarolo, S.V.; Kestenbach, H.-J. "A estrutura de materiais poliméricos no microscópio eletronico de transmissão" Anais do 1 Cong. Bras. Pol. Vol 2, 881-886, (1991).
- Haslan, J; Willis, H.A.; Squirrel, D.C.M. "Identification and Analysis of Plastics" 2nd ed., Hazell, Watron and Viney, London, p. 441 (1972).
- Sato, H.; Takebayashi, K.; Tanaka, Y. -"Analysis of ¹³C NMR of polybutadiene by means of low molecular weight model compounds" Macromolecules 20, 2418-2423 (1987).
- 14. Sardelis, K.; Michels, H.J.; Allen, G. "Graded block and randomized copolymers of butadiene-styrene" Polymer, 25, 1011-1019 (1984).
- Sato, H.; Ishikawa, T.; Takebayashi, K.; Tanaka, Y. - "¹³C NMR signal assignment of styrene/butadiene copolymer" Macromolecules 22, 1748-1753 (1989).
- Yu, D.; Wu, M.; Jiao, S. "Study on the sequence structure of SBR by ¹³C-NMR method. VI. Monte Carlo simulation of the sequence of SBR" Chinese J. Polym. Sci., Vol 11, N 2, p.158-162 (1993).
- Pham, Q.T. "Proton and carbon NMR spectra of polymers" Penton Press, London CKC Press Inc. (1991).